Summary

Sondera strukturen och dynamiken i Nucleosomes med hjälp av Atomic Force Microscopy Imaging

Published: January 31, 2019
doi:

Summary

Här presenterar vi ett protokoll för att karakterisera nukleosomens partiklar på singel-molekyl nivå använda statiska och time-lapse atomic force microscopy (AFM) imaging tekniker. Den beskrivna ytan funktionalisering metoden möjliggör tillfångatagandet av strukturen och dynamiken i nucleosomes i hög upplösning på nanonivå.

Abstract

Kromatin, som är en lång kedja av nukleosomens subenheter, är ett dynamiskt system som möjliggör sådana kritiska processer som DNA-replikation och transkription att ta plats i eukaryota celler. Dynamiken i nucleosomes ger åtkomst till DNA av replikation och transkription maskinerier och bidrar kritiskt till de molekylära mekanismerna bakom kromatin funktioner. Singel-molekyl studier såsom atomic force microscopy (AFM) imaging har bidragit avsevärt till vår nuvarande förståelse av rollen av nukleosomens struktur och dynamik. Det nuvarande protokollet beskriver de steg som gör det möjligt för högupplösta AFM avbildningstekniker att studera den strukturella och dynamiska egenskaper för nucleosomes. Protokollet är illustrerad av AFM data erhållna för de centromer nucleosomes där Histon H3 ersätts med dess motsvarighet centromer protein A (CENP-A). Protokollet börjar med montering av mono-nucleosomes med en kontinuerlig utspädning metoden. Beredning av glimmer substratet functionalized med aminopropyl silatrane (APS-mica) som används för nukleosomens bildtagning är kritiska för AFM visualisering av nucleosomes beskrivs och förfarandet för att förbereda underlaget tillhandahålls. Nucleosomes deponeras på APS-mica ytan är först avbildas med hjälp av statiska AFM, som fångar en ögonblicksbild av nukleosomens befolkningen. Från analyser av dessa bilder, sådana parametrar som storlek av DNA lindad runt nucleosomes kan mätas och denna process är också detaljerade. Time-lapse AFM imaging förfarande i vätskan beskrivs för höghastighetståg time-lapse AFM som kan fånga flera bildrutor av nukleosomens dynamics per sekund. Slutligen är analysen av nukleosomens dynamics möjliggör kvantitativa karakterisering av de dynamiska processerna beskrivs och illustreras.

Introduction

I eukaryota celler är DNA mycket komprimerad och organiserade i kromosomer. 1 den första nivån av DNA organisation inom en kromosom är montering av nucleosomes i vilka 147 bp DNA är tätt lindade runt en Histon octamer kärna. 2 , 3 nucleosome partiklar montera på en lång DNA-molekyl som bildar en kromatin-matris som organiseras sedan tills en mycket kompakt kromosom enhet bildas. 4 disassemblyen av kromatin ger tillgången till fri DNA som krävs av kritiska cellulära processer såsom gen transkription och arvsmassan replikering, vilket tyder på att kromatin är ett mycket dynamiskt system. 5 , 6 , 7 förstå de dynamiska egenskaperna hos DNA på olika kromatin nivåer är kritiskt viktigt klarlägga genetiska processer på molekylär nivå där misstag kan leda till celldöd eller utvecklingen av sjukdomar som cancer. 8 en kromatin egenskap av stor betydelse är dynamiken i nucleosomes. 9 , 10 , 11 , 12 hög stabilitet av dessa partiklar har möjliggjort strukturella karakterisering av kristallografiska tekniker. 2 vad dessa studier saknas är de dynamiska detaljerna för nucleosomes såsom mekanismen för DNA uppackning från Histon kärnan; den dynamiska vägen som krävs för transkription och replikering processer. 7 , 9 , 13 , 14 , 15 , 16 vidare särskilda proteiner kallas remodeling faktorer har visat sig underlätta demonteringen av nucleosomal partiklar17; inneboende dynamiken i nucleosomes är dock den kritiska faktorn i denna process som bidrar till hela demontering processen. 14 , 16 , 18 , 19

Singel-molekyl tekniker såsom enda-molekyl fluorescens19,20,21, optiska svällning (pincett)13,18,22,23 och AFM 10 , 14 , 15 , 16 , 24 , 25 , 26 har varit avgörande för att förstå dynamiken i nucleosomes. Bland dessa metoder, AFM förmåner från flera unika och attraktiva funktioner. AFM gör att man kan visualisera och karaktärisera enskilda nucleosomes samt de längsta matriser27. Från AFM bilder, kan viktiga egenskaper hos nukleosomens struktur såsom längden av DNA lindad runt Histon kärnan vara uppmätta 10,14,26,28. en parameter som är central för karakterisering av nukleosomens uppackning dynamics. Studier har visat nucleosomes vara mycket dynamiska system och att DNA kan spontant packa från Histon core14förbi AFM. Den spontana uppackning av DNA från nucleosomes var direkt visualiseras av AFM verksamma i time-lapse läget när bildtagning sker i vattenlösningar 14,26,29.

Tillkomsten av höghastighetståg time-lapse AFM (HS-AFM) instrumenteringen gjort det möjligt att visualisera nukleosomens uppackning processen på millisekund tidsskala 14,15,24. Senaste HS-AFM 16,30 studier av centromer specifika nucleosomes avslöjade flera nya funktioner i de nucleosomes jämfört med den kanoniska typ. Centromer nucleosomes utgör av en centromer, en liten del av kromosomen kritiskt viktigt för kromosom segregation31. Till skillnad från canonical nucleosomes i bulk kromatin innehåller Histon kärnan i Centromeren nucleosomes CENP-A Histon istället för Histon H332,33. Till följd av detta Histon substitution, DNA inslagning i Centromeren nucleosomes är ~ 120 bp i stället för de ~ 147 bp för kanoniska nucleosomes; en skillnad som kan leda till olika morfologier Centromeren och kanoniska nucleosomes kedjor34, tyder på att centromer kromatin genomgår högre dynamics jämfört med huvuddelen en. Den nya dynamik som visas av centromer nucleosomes i HS-AFM16,30 studier exemplifiera en unik möjlighet som tillhandahålls av denna enda-molekyl teknik att direkt visualisera den strukturella och dynamiska egenskaper för nucleosomes. Exempel på dessa funktioner kort och diskuteras illustreras i slutet av uppsatsen. Detta gjordes framsteg på grund av utvecklingen av nya protokoll för AFM avbildning av nucleosomes samt ändringarna av befintliga metoder. Målet med det protokoll som beskrivs här är att göra dessa spännande framsteg i singel-molekyl AFM nukleosomens studier tillgänglig för alla som vill utnyttja dessa tekniker i sina kromatin-undersökningar. Många av de tekniker som beskrivs är tillämpliga på problem utanför studien av nucleosomes och kan användas för undersökningar av andra protein och DNA system av intresse. Några exempel på sådana program kan hittas i publikationer35,36,37,38,39,40,41, 42,43,44,45,46,47,48,49 och utsikterna för AFM studier av olika Biomolekylär system ges i recensioner29,50,51,53,54.

Protocol

1. kontinuerlig utspädning montering av Mono-nucleosomes Generera och rena en ungefärligt 400 bp DNA substrat som innehåller en off-centrerad Widom 601 nukleosomens positionering sekvens. 55Obs: För att begränsa oönskade bildandet av di-nucleosomes, varje ‘arm’ flankerande positionering sekvensen bör inte överstiga ~ 150 bp. Använd plasmiden pGEM3Z-601 tillsammans med designade primers och förstärka substrat DNA med PCR. För 423 bp underlaget med 122 och 154 bp ar…

Representative Results

Mono-nucleosomes var först förberedda för AFM imaging experiment med en kontinuerlig utspädning montering metod (figur 1). De beredda nucleosomes kontrollerades sedan använda diskontinuerligt SDS-PAGE (figur 2). En glimmer yta var nästa functionalized använder APS, som fångar nucleosomes på ytan samtidigt som en slät bakgrund för högupplöst avbildning (figur 3). Nucleosomes sattes in på APS-mica och var därefter avbil…

Discussion

Protokollet beskrivs ovan är ganska enkelt och ge mycket reproducerbara resultat, även om några viktiga frågor kan understrykas. Functionalized APS-mica är viktiga substrat för att få tillförlitliga och reproducerbara resultat. En hög stabilitet av APS-glimmer är en av de viktigaste inslagen i detta substrat som gör att man kan förbereda imaging underlaget i förväg för användning som kan användas minst två veckor efter förbereds. 59 , 61 dock y…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Författare bidrag: YLL och MSD utformade projektet. MSD monterade nucleosomes. MSD och ZS utförs AFM experiment och data analyser. Alla författare skrev och redigerade manuskriptet.

Materials

Plasmid pGEM3Z-601 Addgene, Cambridge, MA 26656
PCR Primers IDT, Coralville, IA Custom Order (FP) 5'- CAGTGAATTGTAATACGACTC-3' (RP) 5'-ACAGCTATGACCATGATTAC-3'
DreamTaq polymerase ThermoFischer Scientific, Waltham, MA EP0701 Catalog number for 200 units
PCR purification kit Qiagen, Hilden, Germany  28104 Catalog number for 50 units
Tris base Sigma-Aldrich, St. Louis, MO 10708976001 Catalog number for 250 g
EDTA ThermoFischer Scientific, Waltham, MA 15576028 Catalog number for 500 g
(CENP-A/H4)2, recombinant human EpiCypher, Durham, NC 16-0010 Catalog number for 50 ug
H2A/H2B, recombinant human EpiCypher, Durham, NC 15-0311 Catalog number for 50 ug
H3 Octamer, recombinant human EpiCypher, Durham, NC 16-0001 Catalog number for 50 ug
Slide-A-Lyzer MINI Dialysis Device Kit, 10K MWCO, 0.1 mL ThermoFischer Scientific, Waltham, MA 69574 Catalog number for 10 devices
Sodium Chloride Sigma-Aldrich, St. Louis, MO S9888-500G Catalog number for 500 mg
Amicon Ultra-0.5 mL Centrifugal Filters  Millipore-sigma, Burlington, MO UFC501008 Catalog number for 8 devices
HCl Sigma-Aldrich, St. Louis, MO 258148-25ML Catalog number for 25 mL
Tricine Sigma-Aldrich, St. Louis, MO T0377-25G Catalog number for 25 g
SDS Sigma-Aldrich, St. Louis, MO 11667289001 Catalog number for 1 kg
Ammonium Persulfate (AmmPS)  Bio-Rad, Hercules, CA 1610700 Catalog number for 10 g
30% Acrylamide/Bis Solution, 37.5:1 Bio-Rad, Hercules, CA 1610158 Catalog number for 500 mL
TEMED Bio-Rad, Hercules, CA 1610800 Catalog number for 5 mL
4x Laemmli protein sample buffer for SDS-PAGE Bio-Rad, Hercules, CA 1610747 Catalog number for 10 mL
2-ME Sigma-Aldrich, St. Louis, MO M6250-10ML Catalog number for 10 mL
ageRuler Prestained Protein Ladder  ThermoFischer Scientific, Waltham, MA 26616 Catalog number for 500 uL
Bio-Safe™ Coomassie Stain Bio-Rad, Hercules, CA 1610786 Catalog number for 1 L
Nonwoven cleanroom wipes: TX604 TechniCloth  TexWipe, Kernersvile, NC TX604
Muscovite Block Mica AshevilleMica, Newport News, VA Grade-1
Aminopropyl silatrane (APS) Synthesized as described in 22
HEPES Sigma-Aldrich, St. Louis, MO H4034-25G Catalog number for 25 g
Scotch Tape Scotch-3M, St. Paul, MN
TESPA-V2 afm probe (for static imaging) Bruker AFM Probes, Camarillo, CA
MSNL-10 afm probe (for standard time-lapse imaing) Bruker AFM Probes, Camarillo, CA
Aron Alpha Industrial Krazy Glue Toagosei America, West Jefferson, OH AA480 Catalog number for 2 g tube
MgCl2 Sigma-Aldrich, St. Louis, MO M8266-100G Catalog number for 100 g
Millex-GP Filter, 0.22 µm Sigma-Aldrich, St. Louis, MO SLGP05010 Catalog number for 10 devices
BL-AC10DS-A2 afm probe (for HS-AFM) Olympus, Japan
Compound FG-3020C-20  FluoroTechnology Co., Ltd., Kagiya, Kasugai, Aichi, Japan 
Compound FS-1010S135-0.5  FluoroTechnology Co., Ltd., Kagiya, Kasugai, Aichi, Japan 
MultiMode Atomic Force Microscope Bruker-Nano/Veeco, Santa Barbara, CA
High-Speed Time-Lapse Atomic Force Microsocopy Toshio Ando, Nano-Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan

References

  1. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science. 184 (4139), 868-871 (1974).
  2. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 389 (6648), 251-260 (1997).
  3. Clark, D. J. Nucleosome Positioning, Nucleosome Spacing and the Nucleosome Code. Journal of biomolecular structure. 27 (6), 781-793 (2010).
  4. Poirier, M. G., Oh, E., Tims, H. S., Widom, J. Dynamics and function of compact nucleosome arrays. Nature Structural & Molecular Biology. 16 (9), 938-944 (2009).
  5. Li, B., Carey, M., Workman, J. L. The Role of Chromatin during Transcription. Cell. 128 (4), 707-719 (2007).
  6. Venkatesh, S., Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nature Reviews Molecular Cell Biology. 16, 178 (2015).
  7. Lai, W. K. M., Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nature Reviews in Molecular Cell Biology. 18 (9), 548-562 (2017).
  8. Adam, S., Polo, S. o. p. h. i. e. E., Almouzni, G. Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell. 155 (1), 94-106 (2013).
  9. Ahmad, K., Henikoff, S. Epigenetic Consequences of Nucleosome Dynamics. Cell. 111 (3), 281-284 (2002).
  10. Filenko, N. A., Palets, D. B., Lyubchenko, Y. L. Structure and dynamics of dinucleosomes assessed by atomic force microscopy. Journal of amino acids. 2012, 650840 (2012).
  11. Hihara, S., et al. Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell reports. 2 (6), 1645-1656 (2012).
  12. Jiang, C., Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nature reviews. Genetics. 10 (3), 161-172 (2009).
  13. Brennan, L. D., Forties, R. A., Patel, S. S., Wang, M. D. DNA looping mediates nucleosome transfer. Nature Communications. 7, 13337 (2016).
  14. Lyubchenko, Y. L. Nanoscale nucleosome dynamics assessed with time-lapse AFM. Biophysical Reviews. 6 (2), 181-190 (2014).
  15. Miyagi, A., Ando, T., Lyubchenko, Y. L. Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. 생화학. 50 (37), 7901-7908 (2011).
  16. Stumme-Diers, M. P., Banerjee, S., Hashemi, M., Sun, Z., Lyubchenko, Y. L. Nanoscale dynamics of centromere nucleosomes and the critical roles of CENP-A. Nucleic Acids Research. 46 (1), 94-103 (2018).
  17. Narlikar, G. e. e. t. a. J., Sundaramoorthy, R., Owen-Hughes, T. Mechanisms and Functions of ATP-Dependent Chromatin-Remodeling Enzymes. Cell. 154 (3), 490-503 (2013).
  18. Ngo, T. T., Zhang, Q., Zhou, R., Yodh, J. G., Ha, T. Asymmetric Unwrapping of Nucleosomes under Tension Directed by DNA Local Flexibility. Cell. 160 (6), 1135-1144 (2015).
  19. Ruth, B., Wietske, K., Kirsten, M., John van, N. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes. Journal of Physics: Condensed Matter. 27 (6), 064103 (2015).
  20. Buning, R., van Noort, J. Single-pair FRET experiments on nucleosome conformational dynamics. Biochimie. 92 (12), 1729-1740 (2010).
  21. Koopmans, W. J. A., Brehm, A., Logie, C., Schmidt, T., van Noort, J. Single-Pair FRET Microscopy Reveals Mononucleosome Dynamics. Journal of Fluorescence. 17 (6), 785-795 (2007).
  22. Brower-Toland, B. D., et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proceedings of the National Academy of Sciences. 99 (4), 1960 (1960).
  23. Bennink, M. L., et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nature Structural Biology. 8 (7), 606-610 (2001).
  24. Lyubchenko, Y. L., Shlyakhtenko, L. S., Chellappan, S. P. . Chromatin Protocols. , 27-42 (2015).
  25. Menshikova, I., Menshikov, E., Filenko, N., Lyubchenko, Y. L. Nucleosomes structure and dynamics: effect of CHAPS. International Journal of Biochemistry and Molecular Biology. 2, 2129-2137 (2011).
  26. Shlyakhtenko, L. S., Lushnikov, A. Y., Lyubchenko, Y. L. Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. 생화학. 48 (33), 7842-7848 (2009).
  27. Yodh, J. G., Lyubchenko, Y. L., Shlyakhtenko, L. S., Woodbury, N., Lohr, D. Evidence for nonrandom behavior in 208-12 subsaturated nucleosomal array populations analyzed by AFM. 생화학. 38 (48), 15756-15763 (1999).
  28. Filenko, N. A., et al. The role of histone H4 biotinylation in the structure of nucleosomes. PLoS One. 6 (1), e16299 (2011).
  29. Lyubchenko, Y. L., Meyers, R. . Encyclopedia of Analytical Chemistry. , 1-24 (2013).
  30. Stumme-Diers, M. P., Banerjee, S., Sun, Z., Lyubchenko, Y. L., Lyubchenko, Y. L. . Nanoscale Imaging: Methods and Protocols. , 225-242 (2018).
  31. Cleveland, D. W., Mao, Y., Sullivan, K. F. Centromeres and Kinetochores. Cell. 112 (4), 407-421 (2003).
  32. Rosin, L. F., Mellone, B. G. Centromeres Drive a Hard Bargain. Trends in Genetics. 33 (2), 101-117 (2017).
  33. McKinley, K. L., Cheeseman, I. M. The molecular basis for centromere identity and function. Nature Reviews Molecular Cell Biology. 17 (1), 16-29 (2016).
  34. Lyubchenko, Y. L. Centromere chromatin: a loose grip on the nucleosome. Nature Structural & Molecular Biology. 21 (1), 8 (2014).
  35. Lyubchenko, Y. L., Shlyakhtenko, L. S. Visualization of supercoiled DNA with atomic force microscopy in situ. Proceedings of the National Academy of Sciences. 94 (2), 496-501 (1997).
  36. Lyubchenko, Y. L., Shlyakhtenko, L. S., Aki, T., Adhya, S. Atomic force microscopic demonstration of DNA looping by GalR and HU. Nucleic Acids Research. 25 (4), 873-876 (1997).
  37. Herbert, A., et al. The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic acids research. 26 (15), 3486-3493 (1998).
  38. Oussatcheva, E. A., et al. Structure of branched DNA molecules: gel retardation and atomic force microscopy studies. Journal of Molecular Biology. 292 (1), 75-86 (1999).
  39. Gaillard, C., Shlyakhtenko, L. S., Lyubchenko, Y. L., Strauss, F. Structural analysis of hemicatenated DNA loops. BMC Struct Biol. 2 (1), 7 (2002).
  40. Potaman, V. N., et al. Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats. Journal of Molecular Biology. 326 (4), 1095-1111 (2003).
  41. Virnik, K., et al. “Antiparallel” DNA loop in gal repressosome visualized by atomic force microscopy. Journal of Molecular Biology. 334 (1), 53-63 (2003).
  42. Pavlicek, J. W., et al. Supercoiling-induced DNA bending. 생화학. 43 (33), 10664-10668 (2004).
  43. Karymov, M., Daniel, D., Sankey, O. F., Lyubchenko, Y. L. Holliday junction dynamics and branch migration: single-molecule analysis. Proceedings of the National Academy of Sciences. 102 (23), 8186-8191 (2005).
  44. Shlyakhtenko, L. S., et al. Nanoscale structure and dynamics of ABOBEC3G complexes with single-stranded DNA. 생화학. 51 (32), 6432-6440 (2012).
  45. Shlyakhtenko, L. S., Lushnikov, A. Y., Miyagi, A., Lyubchenko, Y. L. Specificity of binding of single-stranded DNA-binding protein to its target. 생화학. 51 (7), 1500-1509 (2012).
  46. Shlyakhtenko, L. S., et al. APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies. Scientific Reports. 5, 15648 (2015).
  47. Sun, Z., Tan, H. Y., Bianco, P. R., Lyubchenko, Y. L. Remodeling of RecG Helicase at the DNA Replication Fork by SSB Protein. Scientific Reports. 5, 9625 (2015).
  48. Bianco, P. R., Lyubchenko, Y. L. SSB and the RecG DNA helicase: An intimate association to rescue a stalled replication fork. Protein Science. 26 (4), 638-649 (2017).
  49. Zhang, Y., et al. High-speed atomic force microscopy reveals structural dynamics of alpha-synuclein monomers and dimers. Journal of Chemical Physics. 148 (12), 123322 (2018).
  50. Lyubchenko, Y. L. DNA structure and dynamics: an atomic force microscopy study. Cell Biochem Biophys. 41 (1), 75-98 (2004).
  51. Lyubchenko, Y. L., Shlyakhtenko, L. S. AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods. 47 (3), 206-213 (2009).
  52. Lyubchenko, Y. L., Shlyakhtenko, L. S., Gall, A. A. Atomic force microscopy imaging and probing of DNA, proteins, and protein DNA complexes: silatrane surface chemistry. Methods in Molecular Biology. 543, 337-351 (2009).
  53. Lyubchenko, Y. L. Nanoimaging methods for biomedicine. Methods. 60 (2), 111-112 (2013).
  54. Lyubchenko, Y. L., Shlyakhtenko, L. S. Imaging of DNA and Protein-DNA Complexes with Atomic Force Microscopy. Critical Reviews in Eukaryotic Gene Expression. 26 (1), 63-96 (2016).
  55. Lowary, P. T., Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. Journal of Molecular Biology. 276 (1), 19-42 (1998).
  56. Lyubchenko, Y. L., Shlyakhtenko, L. S., Ando, T. Imaging of nucleic acids with atomic force microscopy. Methods (San Diego, Calif). 54 (2), 274-283 (2011).
  57. Luger, K., Rechsteiner, T. J., Richmond, T. J. Preparation of nucleosome core particle from recombinant histones. Methods in enzymology. 304, 3-19 (1999).
  58. Gallagher, S. R. One-dimensional SDS gel electrophoresis of proteins. Current protocols in immunology. , (2006).
  59. Shlyakhtenko, L. S., Gall, A. A., Lyubchenko, Y. L., Taatjes, D. J., Roth, J. . Cell Imaging Techniques: Methods and Protocols. , 295-312 (2013).
  60. Uchihashi, T., Ando, T., Braga, P. C., Ricci, D. . Atomic Force Microscopy in Biomedical Research: Methods and Protocols. , 285-300 (2011).
  61. Lyubchenko, Y. L., Gall, A. A., Shlyakhtenko, L. S. Visualization of DNA and protein-DNA complexes with atomic force microscopy. Methods in molecular biology. 1117, 367-384 (2014).
  62. Lyubchenko, Y. L., Shlyakhtenko, L. S. . Proceeding of the Fourth International Workshop: STM-AFM-SNOM: New Nanotools for Molecular Biology. , 20-34 (1997).
  63. Kato, M., et al. Interarm interaction of DNA cruciform forming at a short inverted repeat sequence. Biophys J. 85 (1), 402-408 (2003).
  64. Yodh, J. G., Woodbury, N., Shlyakhtenko, L. S., Lyubchenko, Y. L., Lohr, D. Mapping nucleosome locations on the 208-12 by AFM provides clear evidence for cooperativity in array occupation. 생화학. 41 (11), 3565-3574 (2002).
  65. Lyubchenko, Y. L., Gall, A. A., Shlyakhtenko, L. S. Atomic force microscopy of DNA and protein-DNA complexes using functionalized mica substrates. DNA-Protein Interactions: Principles and Protocols. , 569-578 (2001).
  66. Lyubchenko, Y. L. Preparation of DNA and nucleoprotein samples for AFM imaging. Micron. 42 (2), 196-206 (2011).
  67. Gilmore, J. L., et al. Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. 생화학. 48 (44), 10492-10498 (2009).
  68. Shlyakhtenko, L. S., et al. Molecular mechanism underlying RAG1/RAG2 synaptic complex formation. J Biol Chem. 284 (31), 20956-20965 (2009).
  69. Suzuki, Y., et al. Visual Analysis of Concerted Cleavage by Type IIF Restriction Enzyme SfiI in Subsecond Time Region. Biophysical. 101 (12), 2992-2998 (2011).
  70. Shlyakhtenko, L. S., Lushnikov, A. J., Li, M., Harris, R. S., Lyubchenko, Y. L. Interaction of APOBEC3A with DNA assessed by atomic force microscopy. PloS one. 9 (6), e99354 (2014).
  71. Pan, Y., et al. Nanoscale Characterization of Interaction of APOBEC3G with RNA. 생화학. 56 (10), 1473-1481 (2017).
  72. Sun, Z., Hashemi, M., Warren, G., Bianco, P. R., Lyubchenko, Y. L. Dynamics of the Interaction of RecG Protein with Stalled Replication Forks. 생화학. 57 (13), 1967-1976 (2018).
  73. Pavlicek, J. W., Lyubchenko, Y. L., Chang, Y. Quantitative analyses of RAG-RSS interactions and conformations revealed by atomic force microscopy. 생화학. 47 (43), 11204-11211 (2008).
check_url/kr/58820?article_type=t

Play Video

Cite This Article
Stumme-Diers, M. P., Stormberg, T., Sun, Z., Lyubchenko, Y. L. Probing The Structure And Dynamics Of Nucleosomes Using Atomic Force Microscopy Imaging. J. Vis. Exp. (143), e58820, doi:10.3791/58820 (2019).

View Video