Summary

アグロバクテリウムサツマイモネコブセンチュウ-ジャガイモの変換を介したと GUS 染色によってスベリン遺伝子のプロモーター活性

Published: March 29, 2019
doi:

Summary

ここでは、ジャガイモを変換する 2 つのプロトコルを提案する.サツマイモネコブセンチュウ生成トランスジェニック植物毛状根自己伝達することができます野生型撮影アグロバクテリウム変換完了形質転換植物に します。我々 は、ガス変換された根の染色によるプロモーター活性を検出します。

Abstract

アグロバクテリウムの sp は、転送および独自の T-DNA を植物のゲノムに統合する能力があり、形質転換植物を得る最も広く使用されている方法の一つです。ここでは、遺伝子組み換えポテト (ジャガイモ) 植物を変更する 2 つの変換システムを提案する.A. 根頭がんしゅ病菌の変換で葉が感染している、変換されたセルが選択されて、新しい完全な形質転換体が 18 週間でホルモンを使用して再生成されます。A. 体の獲得変換で茎は針で細菌を注入することにより感染している、新登場の変換された毛状根は赤い蛍光マーカーを使用して検出されます、非変形の根が削除されます。5-6 週間で得られた植物は完全に開発された変換された毛状根と野生型撮影のコンポジットです。バイオマスの増加に変換された毛状根は摘出し、自己反映できます。我々 は両方アグロバクテリウム-仲介された変換方法スベリン生合成遺伝子プロモーターによるGUSレポーター遺伝子を表現する根を取得するを適用されます。GUS 染色手順は、プロモーター発現誘導の細胞局在化をことができます。両方の方法で変換したバレイショの根を示した GUS GUS 活性 suberized 内皮、外皮、およびさらに、 A. 体の獲得変換根を染色も根の出現で検出されました。A. 体の獲得が根に表現される遺伝子を研究する高速代替ツールをすることができますが示唆されました。

Introduction

経済的利益は別として遺伝子組換え植物の世代は、独自の関連性研究遺伝子の究極の機能を示すため、植物生理学と開発を理解します。最も広く法植物 DNA の挿入はアグロバクテリウム-変換を介した。アグロバクテリウムは、その腫瘍を誘発する (Ti) プラスミドの作用によって多くの植物種の感染組織におけるクラウン苛立つを生成することです。プラスミドには、植物ゲノムに組み込まれる予定、組織分化1,2を誘発する遺伝子のセットを持つ T DNA 領域が含まれています。遺伝子による T DNA 内でこれらの遺伝子の交換は表現型効果3を回避する特定の植物の変更の生成を許可しています。T DNA へのクローニング遺伝子のため、Ti プラスミドの遺伝子の残り中のバイナリのプラスミドと呼ばれる独立したプラスミドの DNA 領域が削除されて (T-DNA 転送と挿入メカニズムを許可する病原性遺伝子) がされています。ヘルパー プラスミドに配置されます。A. 根頭がんしゅ病菌による変換は、植物バイオ テクノロジー研究、いくつかの利点: それは高価な装置を必要としない、安定性と過渡工場変換とコピーに統合されている遺伝子の低い数字の両方を生成することができる、染色体4。ただし、ほとんどの植物がないシロイヌナズナ,安定形質転換細胞の生成に単一または外因性ホルモンは、骨の折れる、時間がかかり、このプロセスを作るを使用して少数の細胞からの植物体再生が必要です。A. 体の獲得は植物ゲノムを変更することができます毛状根や不定根 (Ri) のルート誘導プラスミド5でエンコードされたrol (根軌跡) 遺伝子の発現による感染部位での生産します。A. 根頭がんしゅ病菌より少ないが、 A. 体の獲得も遺伝子ルーツを取得する使用されます。この場合、 a. 体の獲得には、2 番目 T-DNA 遺伝子を運ぶとで Ri プラスミドとバイナリのプラスミッドの T-DNA 元にはが含まれています。感染サイトが茎や胚軸、野生型撮影から新興新しい毛深い遺伝子ルーツを持つ、複合植物が得られます。また、変換された毛状根育つことが自律的体外炭素ソース入力メディアで。A. 根頭がんしゅ病菌遺伝子組換え組織を生成するのではなくa. 体の獲得の使用は植物体再生は必須ではありません、それ故にそれはより速くより少なく高価なためルートに標的臓器と関連性を得ています。以前の研究は、ルート特定の遺伝子6,7,8,9表現型特性の充当方法論を実証しています。

塊茎はビタミンの良いソースであることの人間の消費のための栄養の関連性を持っているので、じゃがいも (ジャガイモ) は食糧および農業機構の国際連合 (FAO) によれば、世界で第 4 最も重要な作物やミネラル。そのため、ジャガイモは、農業バイオ テクノロジーのスポット ライトに置かれているし、遺伝と発達の良い生体モデルの研究10,11としてまた考慮されます。ジャガイモの変換は遺伝子の特徴を基になる suberized 組織スベリンに関与し、生合成12,13,14 をワックスの分子機構の理解に貢献 ,,1516,17、スベリン モノマーのトランスポート18と転写調節の19FHT、スベリン フェルロイル トランスフェラーゼ遺伝子はこれらの特徴生合成遺伝子の 1 つそのダウンレギュレーションがスベリン型フェルラ酸エステルの強い減少やジャガイモ塊茎14ワックスと相関周皮の保護の強い障害を生じさせる。付随して、根およびシロイヌナズナの種子は、その推定の細胞 (ASFT/RWP1) のノックアウトもスベリン20,21アルキル ferulates の生産に於いての役割を示した。ジャガイモ、 FHT転写記者行と FHT 抗体を示したプロモーター活性およびタンパク質、外皮、内皮細胞は、一層誘導体と傷ついた組織15に位置して.

この作品は、 a. 体の獲得を使用して野生型撮影で保持されている遺伝子組換えの毛状根を生成する、複合ジャガイモ植物の生成や体外の自律的成長を摘出プロトコルを詳しく説明します。A. 根頭がんしゅ病菌を使用して完全なトランスジェニックバレイショを取得するプロトコルもあります。事例研究としてA. 体の獲得A. 根頭がんしゅ病菌と同じバイナリ ベクトル変換は、 GUSレポーター遺伝子発現を運転FHTプロモーターと根を取得する使用されます。結果報告し、比較します。

Protocol

A. 体の獲得の変形のプロトコルは適応し、ホーンら7から変更し、テスト遺伝子型はs. ニラssp. 結節性(品種デジレ)。A. 根頭がんしゅ病菌変形のプロトコルだった合わせたし、バネルジーら22から変更され、テスト遺伝子型s. ニラssp. 結節性(品種デジレ)および s. の結節の ssp andigena。それぞれ図 1 と?…

Representative Results

サツマイモネコブセンチュウ-ジャガイモ変換を介した 本稿では、手順A. 体の獲得と変換されたルートを取得するように設定が表示されます。図 1は、完全 (完全に開発された毛状根を取得するA. 体の獲得の注射) から 5-6 週間くらいは、プロシージャの概?…

Discussion

ジャガイモ, 安定した完全な遺伝子組換え植物を取得する最も一般的なシステムは、外因性のホルモンを使用して器官を必要とアグロバクテリウム菌株によって変換を使用します。アグロバクテリウムによるプロトコル非 T DNA ベクター シーケンス25を統合する潜在性があるが、この方法は、まだ最も、安価バレイショを変換できます。A. 体の獲得に関心?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この作品は、ジローナ大学 (博士号付与 SF とグラントと資金 (AGL2012 36725, AGL2015 67495 C2 1 R) のフェダー Ministerio デ Economía y Competitividad Ministerio デ Innovación y サイエンス (AGL2009 13745、PB に FPI グラント) によって支えられました。SING11/1)。A. 体の獲得A. 根頭がんしゅ病菌株を提供するため、著者は博士インゲ Broer (ドイツ ・ ロストック市土地利用、ロストック大学研究所) および博士サロメ ・ プラット (セントロ ナシオナル ・ デ ・ Biotecnología、マドリード、スペイン) に感謝してそれぞれ、博士施されたソレルとヘルプとサポートA. 体の獲得変換実験を開始する受信博士アンナ プラセンシア (トゥールーズ III ポール ・ サバティエ大学、CNRS、植物研究所 (LRSV)、カスタネット Tolosanフランス)。著者は研究所の仕事の遂行としていた間、実験のいくつかの植物・ フェラン Fontdecaba くださったカーラ ・ サンチェスの世話で彼女の貴重な援助ありがとうサラ ・ ゴメス (局・ デ ・ Biologia、UdG、ジローナ)彼らの最終的な程度のプロジェクト。

Materials

Acetone

Panreac

1.310.071.21

Acetosyringone

Acros

115540050

Aquarium pump

Prodac

MP350

Autoclave

Ragpa Strelimatic

Bacteriological agar

Lab Conda

1800

BAP

Duchefa

B0904

Beef extract

Lab Conda

1700

Plant growing cabinet

Nuaire

Carbenicillin

Duchefa

C0109

Cefotaxime sodium

Duchefa

C0111

DMSO

Merck

1029310161

Ecotron infors

HT

29378

Ethanol

Merck

1,009,831,011

Falcon tube

Control tecnica

CFT011500

Ferricyanate

Sigma

101001081

Ferrocyanate

Sigma

100979088

Flask (8.06 cm diameter and 11.3 cm height) and plastic lid for in vitro culture

Apiglass

ref16

GA3

Sigma

G7645

Gamborg B5 media

Duchefa

G0210

Gelrite

Duchefa

G1101

Glucosa

Sigma

G5767

Kanamycin

Sigma

K1377

Leukopor tape

BSN Leukopor

BDF47467

Lupe

Wild-Heerbrugg

M420

Magnetic shaker

Agimatic

7000243

MES hydrate

Sigma

M2933-25G

MgSO4

Panreac

131404

Microscope

Olympus

Minufugue centrifugue 5415R

Eppendorf

Murashige and Skoog media

Duchefa

M0254.0050

Na2HPO4

Panreac

131679

NAA

Duchefa

N0903

NaCl

Panreac

131659

NaH2PO4

Sigma

58282

NightSea Stereo

SFA Moonting Adapter

Parafilm

Anorsa

PRFL-001-001

Peptone

Lab Conda

1616

Petri dishes (90 x 14)

Anorsa

200200

pHmetre

Crison

Phytotron

Inkoa

RFTI-R5485

Plant Agar

Duchefa

P1001

Refrigeratot

Liebherr Medline

Rifampicin

Duchefa

R0146

Spectinomycin

Sigma

59007

Spectrophotometer

Shimadzu

Square plates (120 x 120)

Deltalab

200204

Streptomycin

Sigma

S6501

Sucrose

Panreac

131621

Surgical blades

Swann-Morton

201

Surgical needle

NIPRO

015/0204

Triptone

Lab Conda

1612

Triton

Serva

37240

Unimax 1010 shaker

Heidolph

Vacuum

Dinko

x-GlcA (5-Bromo-4-chloro-3-indoxyl-beta-D-glucuronic acid, sodium salt anhydrous)

Biosynth

B-7398

Yeast extract

Lab Conda

1702.00

Zeatin riboside

Sigma

1001042850

References

  1. Gelvin, S. B. Traversing the Cell: Agrobacterium T-DNA’s journey to the host genome. Frontiers in Plant Science. 3, 1-11 (2012).
  2. Lacroix, B., Citovsky, V. The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. The International Journal of Developmental Biology. 57 (6-8), 467-481 (2013).
  3. Lee, L. Y., Gelvin, S. B. T-DNA binary vectors and systems. Plant Physiology. 146 (2), 325-332 (2008).
  4. Ishida, Y., et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacteriumtumefaciens. Nature Biotechnology. 14 (6), 745-750 (1996).
  5. White, F. F., Taylor, B. H., Huffman, G. A., Gordon, M. P., Nester, E. W. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. Journal of Bacteriology. 164 (1), 33-44 (1985).
  6. Dinh, P. T. Y., Brown, C. R., Elling, A. A. RNA Interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and Potato. Phytopathology. 104 (10), 1098-1106 (2014).
  7. Horn, P., et al. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots. Plant Cell Reports. 33 (12), 1977-1992 (2014).
  8. Plasencia, A., et al. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnology Journal. 14 (6), 1381-1393 (2015).
  9. Ron, M., et al. Hairy root transformation using Agrobacteriumrhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology. 166 (2), 455-469 (2014).
  10. Zhang, W., et al. Development and application of a universal and simplified multiplex RT-PCR assay to detect five potato viruses. Journal of General Plant Pathology. 83 (1), 33-45 (2017).
  11. Almasia, N. I., et al. Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies. BMC Biotechnology. 17 (1), 1-11 (2017).
  12. Serra, O., et al. Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. Journal of Experimental Botany. 60 (2), 697-707 (2009).
  13. Serra, O., et al. CYP86A33-Targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiology. 149 (2), 1050-1060 (2008).
  14. Serra, O., et al. A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. The Plant Journal. 62 (2), 277-290 (2010).
  15. Boher, P., Serra, O., Soler, M., Molinas, M., Figueras, M. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids. Journal of Experimental Botany. 64 (11), 3225-3236 (2013).
  16. Serra, O., Chatterjee, S., Figueras, M., Molinas, M., Stark, R. E. Deconstructing a plant macromolecular assembly: chemical architecture, molecular flexibility, and mechanical performance of natural and engineered potato suberins. Biomacromolecules. 15 (3), 799-811 (2014).
  17. Vulavala, V. K. R., et al. Identification of genes related to skin development in potato. Plant Molecular Biology. 94 (4-5), 481-494 (2017).
  18. Landgraf, R., et al. The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. The Plant Cell. 26 (8), 3403-3415 (2014).
  19. Verdaguer, R., et al. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin. Journal of Experimental Botany. 67 (18), 5415-5427 (2016).
  20. Molina, I., Li-Beisson, Y., Beisson, F., Ohlrogge, J. B., Pollard, M. Identification of an Arabidopsis feruloyl-coenzyme A transferase required for suberin synthesis. Plant Physiology. 151 (3), 1317-1328 (2009).
  21. Gou, J. Y., Yu, X. -. H., Liu, C. J. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 106 (44), 18855-18860 (2009).
  22. Banerjee, A. K., Prat, S., Hannapel, D. J. Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Science. 170 (4), 732-738 (2006).
  23. Sunil Kumar, G. B., Ganapathi, T. R., Srinivas, L., Revathi, C. J., Bapat, V. a. Expression of hepatitis B surface antigen in potato hairy roots. Plant Science. 170 (5), 918-925 (2006).
  24. Schmidt, J. F., Moore, M. D., Pelcher, L. E., Covello, P. S. High efficiency Agrobacteriumrhizogenes-mediated transformation of Saponariavaccaria L. (Caryophyllaceae) using fluorescence selection. Plant Cell Reports. 26 (9), 1547-1554 (2007).
  25. Petti, C., Wendt, T., Meade, C., Mullins, E. Evidence of genotype dependency within Agrobacteriumtumefaciens in relation to the integration of vector backbone sequence in transgenic Phytophthorainfestans-tolerant potato. Journal of Bioscience and Bioengineering. 107 (3), 301-306 (2009).
  26. Gaudin, V., Vrain, T., Jouanin, L. Bacterial genes modifying hormonal balances in plants. Plant Physiology and Biochemistry. 32 (1), 11-29 (1994).
  27. Nemoto, K., et al. Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signaling &amp. 행동분석학. 4 (12), 1145-1147 (2009).
  28. Visser, R. G. F., et al. Expression and inheritance of inserted markers in binary vector carrying Agrobacteriumrhizogenes-transformed potato (Solanumtuberosum L.). Theoretical and Applied Genetics. 78 (5), 705-714 (1989).
  29. Guillon, S., Trémouillaux-Guiller, J., Pati, P. K., Rideau, M., Gantet, P. Hairy root research: recent scenario and exciting prospects. Current Opinion in Plant Biology. 9 (3), 341-346 (2006).
  30. Georgiev, M. I., Agostini, E., Ludwig-Müller, J., Xu, J. Genetically transformed roots: from plant disease to biotechnological resource. Trends in Biotechnology. 30 (10), 528-537 (2012).
  31. Ooms, G., Lenton, J. R. T-DNA genes to study plant development: precocious tuberisation and enhanced cytokinins in A. tumefaciens transformed potato. Plant Molecular Biology. 5 (4), 205-212 (1985).
  32. de Vries-Uijtewaal, E., et al. Fate of introduced genetic markers in transformed root clones and regenerated plants of monohaploid and diploid potato genotypes. TAG. Theoretical and applied genetics. 78 (2), 185-193 (1989).
  33. Bird, D., et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. The Plant Journal: For Cell and Molecular Biology. 52 (3), 485-498 (2007).
  34. Luo, B., Xue, X. Y., Hu, W. L., Wang, L. J., Chen, X. Y. An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant and Cell Physiology. 48 (12), 1780-1802 (2007).
  35. Panikashvili, D., et al. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiology. 145 (4), 1345-1360 (2007).
  36. Panikashvili, D., et al. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Molecular Plant. 3 (3), 563-575 (2010).
  37. Bjelica, A., et al. Fatty acid ω-hydroxylases from Solanum tuberosum. Plant Cell Reports. 35 (12), 2435-2448 (2016).
  38. Ding, Y., et al. Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. The Plant Cell. 20 (10), 2681-2695 (2008).
  39. Isayenkov, S., Mrosk, C., Stenzel, I., Strack, D., Hause, B. Suppression of allene oxide cyclase in hairy roots of Medicagotruncatula reduces jasmonate levels and the degree of mycorrhization with glomus intraradices 1[w]. Plant Physiology. 139 (3), 1401-1410 (2005).
  40. Dalton, D. A., et al. Physiological roles of glutathione S-Transferases in soybean root Nodules 1[C][W][OA]. Plant Physiology. 150 (1), 521-530 (2009).
  41. Limpens, E., et al. RNA interference in Agrobacteriumrhizogenes-transformed roots of Arabidopsis and Medicago truncatula. Journal of Experimental Botany. 55 (399), 983-992 (2004).

Play Video

Cite This Article
Fernández-Piñán, S., López, J., Armendariz, I., Boher, P., Figueras, M., Serra, O. Agrobacterium tumefaciens and Agrobacterium rhizogenes-Mediated Transformation of Potato and the Promoter Activity of a Suberin Gene by GUS Staining. J. Vis. Exp. (145), e59119, doi:10.3791/59119 (2019).

View Video