Summary

动态核极化固态核磁共振法制备结构澄清用真菌和植物材料

Published: February 12, 2019
doi:

Summary

提出了一种用于多维固态核磁共振光谱和动态核极化 (dnp) 研究的 13 c、15个n 标记真菌和植物样品的制备方案。

Abstract

该协议显示了如何均匀地生产13c, 15n 标记的真菌材料, 以及如何进行这些软材料的固态核磁共振和敏感增强的 dnp 实验。并对植物生物质的样品处理工艺进行了详细的介绍。这种方法允许测量一系列的一维和 2d 13c-13 cp-15 n相关光谱, 从而能够以最小的扰动对其原生状态下的复杂生物材料进行高分辨率结构描述.通过量化一维光谱中的强度和二维相关谱中的偏振传递效率, 可以检测同位素标记。动态核极化 (dnp) 样品制备的成功与否可以用灵敏度增强因子来评价。进一步的实验, 研究多糖和蛋白质的结构方面将导致一个三维架构模型。这些方法可以进行修改和调整, 以研究广泛的富含碳水化合物的材料, 包括植物、真菌、藻类和细菌的天然细胞壁, 以及合成或设计的碳水化合物聚合物及其与其他物质的复合物。分子。

Introduction

碳水化合物在各种生物过程中发挥着核心作用, 如储能、结构建筑、细胞识别和粘附。它们在细胞壁中被丰富, 细胞壁是植物、真菌、藻类和细菌基本成分 1,2,3.细胞壁是生产生物燃料和生物材料的核心来源, 也是抗菌疗法45678的一个有希望的目标,9个

几十年来, 人们一直在努力利用四种主要的生化或遗传方法进行结构表征, 从而大大促进了对这些复杂材料的当代理解。第一种主要方法依靠顺序处理使用苛刻的化学物质或酶将细胞壁分解成不同的部分, 然后对每 10分的糖进行成分和连锁分析。这种方法揭示了聚合物的域分布, 但由于生物分子的化学和物理性质, 解释可能具有误导性。例如, 很难确定碱萃取分数是来自结构较少的分子的单个域, 还是来自具有可比溶解性的空间分离分子。其次, 提取的部分或整个细胞壁也可以测量使用溶液核磁共振, 以确定共价键, 也称为交联, 不同分子之间的 11,12,13, 14,15。通过这种方法, 可以探讨共价锚杆的详细结构, 但由于多糖的溶解度较低、交联位点数量相对较少以及对稳定的非共价效应的无知, 可能会存在局限性。多糖填料, 包括氢键、范德华力、静电相互作用和聚合物纠缠。第三, 利用分离的多糖16171819 在体外测定了结合亲和力, 但纯化过程可能会发生重大变化。这些生物分子的结构和性质。这种方法也不能复制复杂的沉积和组装的大分子后的生物合成。最后, 某些细胞壁成分减毒产生的遗传突变体的表型、细胞形态和力学性质揭示了多糖的结构功能, 但需要更多的分子证据来弥补这些因素的联系。宏观观测与蛋白质机械的工程功能 20

近年来在多维固态核磁共振光谱的发展和应用方面取得的进展为解决这些结构难题提供了一个独特的机会。通过2d/3d 固态核磁共振实验, 可以在不产生重大扰动的情况下, 对富含碳水化合物材料的成分和结构进行高分辨率研究。对植物的原生和二级细胞壁、经过催化处理的生物量、细菌生物膜、真菌中的色素鬼以及最近作者在病原真菌中的完整细胞壁进行了结构研究。熏蒸曲霉21,22,23,24,25,26,27,28,29,30,31. 动态核两极分化的发展 32 333435、36、3738,39,40,41,42极大地促进了核磁共振结构的阐明, 因为 dnp 的灵敏度增强明显缩短了这些复杂生物材料的实验时间。这里描述的协议详细介绍了同位素标记真菌a. 熏蒸剂的程序, 以及为固态核磁共振和 dnp 表征准备真菌和植物样品的程序。类似的标签程序应适用于其他培养基改变的真菌, 样品制备程序应普遍适用于其他富含碳水化合物的生物材料。

Protocol

1.生长13c, 15n 标记的富米达斯下酯类液体培养基 未标记和13c、 15n 标记生长介质的制备注: 酵母提取物丙酮葡萄糖培养基 (ypd) 和改进的最小培养基43均用于维持真菌培养。高压灭菌后的所有步骤都是在层流罩中执行的, 以最大限度地减少污染。 无标记液体介质的制备: 在100毫升蒸馏水中溶解6.5 克 ypd 粉末, 在134°c 下高压灭菌2…

Representative Results

同位素标记大大提高了核磁共振灵敏度, 并使测量一系列 2d 13c-13 c 和13c-15n 相关光谱的可能性成为可能, 以分析其组成、水化、流动性和包装。聚合物, 它将被集成来构建细胞壁结构的三维模型 (图 1)。如果统一的标签成功, 可以在1小时内收集一套完整的 1d13c和 15n 光谱, 每个标准的2d 光谱测量时间不应?…

Discussion

与生化方法相比, 固态核磁共振作为一种无损、高分辨率的技术具有优势。核磁共振在成分分析中也是定量的, 与大多数其他分析方法不同的是, 不存在生物聚合物溶解度有限所带来的不确定性。目前协议的建立有助于今后对富含碳水化合物的生物材料和功能化聚合物的研究。然而, 应当指出, 共振分配和数据分析可能很耗时, 通常需要系统的培训。作者目前正在开发工具和数据库, 以帮助没有经验?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家科学基金会通过 nsf oia-1833040 提供的支持。国家高磁场实验室 (nhmfl) 由国家科学基金会通过 dmr-117490 和佛罗里达州提供支助。nhmfl 的 mas-dnp 系统部分由 nih s10 od018519 和 nsf che-1229170 供资。

Materials

Ammonium Molybdate Tetrahydrate Acros Organics 12054-85-2
AMUPol Cortecnet C010P002
Analytical weighing balance Ohaus B730439218 Model PA84C
Bioclave 16 L VWR 470230-598
Biosafety Cabinet Labconco corporation 302319100
Boric acid VWR BDH9222 store at 15-30 °C
Cobalt(II) Chloride Hexahydrate Honeywell|Fluka 60820 ≥98 %
Copper(II) Sulfate Pentahydrate BDH BDH9312 ≥98 %
Corning LSE shaking incubator Thermo Fisher Scientific 7202152
D2O Sigma Aldrich 151882 99.9 atom % D
d6-DMSO Sigma Aldrich 151874 99.9 atom % D
d8-glycerol Sigma Aldrich 447498 ≥99 atom % D
Dialysis tubing 3.2 kDa Sigma Aldrich D2272 132724
Dipotassium Phosphate VWR BDH9266 ≥98 %
Glycerol Sigma Aldrich G5516 ≥99.5 %
Heraus Megafuge 16R Centrifuge Thermo Fischer Scientific 750004271 Maximum RCF 25,830 x g
HR-MAS Disposable Insert Kit Bruker B4493 Kel-F
Iron(II) Sulfate Heptahydrate Alfa Aesar 14498 ≥99+ %
Magnesium Sulfate Heptahydrate VWR 10034998 store at 18-26 °C
Manganese(II) Chloride Tetrahydrate Alfa Aesar 11563 ≥99 %
Monopotassium Phosphate VWR 470302-254 ≥99 %
pH Meter Mettler Toledo B706689216
Tetrasodium Ethylenediaminetetraacetate Acros Organics 13235-36-9 ≥99.5 %
Zinc Sulfate Heptahydrate Alfa Aesar 33399 ≥98 %
12C3, d8-glycerol Cambridge Isotope Laboratory CDLM-8660 12C3, 99.95%; D8, 98%
13C6-glucose Sigma Alrdrich 364606 ≥99 % (CP)
15N-sodium nitrate Sigma Aldrich 364606 ≥98 % 15N, ≥99 (cp)
3.2 mm sapphire NMR rotor Cortecnet B6939
3.2 mm Silicone plug Bruker B7089
4 mm MAS Rotor Kit Bruker H14355 Zirconia

References

  1. Murrey, H. E., Hsieh-Wilson, L. C. The chemical neurobiology of carbohydrates. Chemical Reviews. 108 (5), 1708-1731 (2008).
  2. Latge, J. P. The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology. 66 (2), 279-290 (2007).
  3. Cosgrove, D. J. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology. 6 (11), 850-861 (2005).
  4. Furtado, A., et al. Modifying plants for biofuel and biomaterial production. Plant Biotechnology Journal. 12 (9), 1246-1258 (2014).
  5. Loqué, D., Scheller, H. V., Pauly, M. Engineering of plant cell walls for enhanced biofuel production. Current Opinion in Plant Biology. 25, 151-161 (2015).
  6. Latge, J. P. Aspergillus fumigatus and aspergillosis. Clinical Microbiology Reviews. 12 (2), 310-350 (1999).
  7. Ragauskas, A. J., et al. The path forward for biofuels and biomaterials. Science. 311 (5760), 484-489 (2006).
  8. Service, R. F. Cellulosic ethanol – Biofuel researchers prepare to reap a new harvest. Science. 315 (5818), 1488-1491 (2007).
  9. Somerville, C., Youngs, H., Taylor, C., Davis, S. C., Long, S. P. Feedstocks for Lignocellulosic Biofuels. Science. 329 (5993), 790-792 (2010).
  10. Schiavone, M., et al. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Research. 14 (6), 933-947 (2014).
  11. Cheng, K., Sorek, H., Zimmermann, H., Wemmer, D. E., Pauly, M. Solution-State 2D NMR Spectroscopy of Plant Cell Walls Enabled by a Dimethylsulfoxide-d(6)/1-Ethyl-3-methylimidazolium Acetate Solvent. Analytical Chemistry. 85 (6), 3213-3221 (2013).
  12. Mansfield, S. D., Kim, H., Lu, F. C., Ralph, J. Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols. 7 (9), 1579-1589 (2012).
  13. Tan, L., et al. An Arabidopsis Cell Wall Proteoglycan Consists of Pectin and Arabinoxylan Covalently Linked to an Arabinogalactan Protein. Plant Cell. 25 (1), 270-287 (2013).
  14. Kollar, R., Petrakova, E., Ashwell, G., Robbins, P. W., Cabib, E. Architecture of the Yeast-Cell Wall – the Linkage between Chitin and Beta(1-3)-Glucan. Journal of Biological Chemistry. 270 (3), 1170-1178 (1995).
  15. Kollar, R., et al. Architecture of the yeast cell wall – beta(1->6)-glucan interconnects mannoprotein, beta(1-3)-glucan, and chitin. Journal of Biological Chemistry. 272 (28), 17762-17775 (1997).
  16. Mccann, M. C., et al. Old and new ways to probe plant cell wall architecture. Canadian Journal of Botany. 73, S103-S113 (1995).
  17. Whitney, S. E. C., Brigham, J. E., Darke, A. H., Reid, J. S. G., Gidley, M. J. In-Vitro Assembly of Cellulose/Xyloglucan Networks – Ultrastructural and Molecular Aspects. The Plant Journal. 8 (4), 491-504 (1995).
  18. Zykwinska, A. W., Ralet, M. C. J., Garnier, C. D., Thibault, J. F. J. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology. 139 (1), 397-407 (2005).
  19. Kiemle, S. N., et al. Role of (1,3)(1,4)-beta-Glucan in Cell Walls: Interaction with Cellulose. Biomacromolecules. 15 (5), 1727-1736 (2014).
  20. Pogorelko, G., Lionetti, V., Bellincampi, D., Zabotina, O. Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signaling & Behavior. 8 (9), e25435 (2013).
  21. Wang, T., Park, Y. B., Cosgrove, D. J., Hong, M. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis thaliana Primary Cell Walls: Evidence from Solid-State NMR. Plant Physiology. 168 (3), 871-884 (2015).
  22. Wang, T., Salazar, A., Zabotina, O. A., Hong, M. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional 13C solid-state nuclear magnetic resonance spectroscopy. 생화학. 53 (17), 2840-2854 (2014).
  23. Grantham, N. J., et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Plants. 3 (11), 859-865 (2017).
  24. Simmons, T. J., et al. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications. 7, 13902 (2016).
  25. Komatsu, T., Kikuchi, J. Selective Signal Detection in Solid-State NMR Using Rotor-Synchronized Dipolar Dephasing for the Analysis of Hemicellulose in Lignocellulosic Biomass. The Journal of Physical Chemistry Letters. 4 (14), 2279-2283 (2013).
  26. Perras, F. A., et al. Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. The Journal of Physical Chemistry A. 121 (3), 623-630 (2017).
  27. Chatterjee, S., Prados-Rosales, R., Itin, B., Casadevall, A., Stark, R. E. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall. Journal of Biological Chemistry. 290 (22), 13779-13790 (2015).
  28. Zhong, J., Frases, S., Wang, H., Casadevall, A., Stark, R. E. Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. 생화학. 47 (16), 4701-4710 (2008).
  29. Kang, X., et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nature Communications. 9 (1), 2747 (2018).
  30. Takahashi, H., et al. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. Journal of the American Chemical Society. 135 (13), 5105-5110 (2013).
  31. Wang, T., Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. Journal of Experimental Botany. 67, 503-514 (2016).
  32. Mentink-Vigier, F., Akbey, &. #. 2. 2. 0. ;., Oschkinat, H., Vega, S., Feintuch, A. Theoretical aspects of magic angle spinning-dynamic nuclear polarization. Journal of Magnetic Resonance. 258, 102-120 (2015).
  33. Gupta, R., et al. Dynamic nuclear polarization enhanced MAS NMR spectroscopy for structural analysis of HIV-1 protein assemblies. The Journal of Physical Chemistry B. 120 (2), 329-339 (2016).
  34. Takahashi, H., Hediger, S., De Paëpe, G. Matrix-free dynamic nuclear polarization enables solid-state NMR 13 C-13 C correlation spectroscopy of proteins at natural isotopic abundance. Chemical Communications. 49 (82), 9479-9481 (2013).
  35. Ni, Q. Z., et al. High frequency dynamic nuclear polarization. Accounts of Chemical Research. 46 (9), 1933-1941 (2013).
  36. Koers, E. J., et al. NMR-based structural biology enhanced by dynamic nuclear polarization at high magnetic field. Journal of Biomolecular NMR. 60 (2-3), 157-168 (2014).
  37. Saliba, E. P., et al. Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids. Journal of the American Chemical Society. 139 (18), 6310-6313 (2017).
  38. Mentink-Vigier, F., et al. Efficient cross-effect dynamic nuclear polarization without depolarization in high-resolution MAS NMR. Chemical Science. 8 (12), 8150-8163 (2017).
  39. Smith, A. N., Twahir, U. T., Dubroca, T., Fanucci, G. E., Long, J. R. Molecular Rationale for Improved Dynamic Nuclear Polarization of Biomembranes. The Journal of Physical Chemistry B. 120 (32), 7880-7888 (2016).
  40. Su, Y., Andreas, L., Griffin, R. G. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and 1H detection. Annual Reviews of Biochemistry. 84, 465-497 (2015).
  41. Hediger, S., Lee, S., Mentink-Vigier, F., Paepe, G. D. MAS-DNP Enhancements: Hyperpolarization, Depolarization, and Absolute Sensitivity. eMagRes. 7, 1-13 (2018).
  42. Ni, Q. Z., et al. In Situ Characterization of Pharmaceutical Formulations by Dynamic Nuclear Polarization Enhanced MAS NMR. The Journal of Physical Chemistry B. 121 (34), 8132-8141 (2017).
  43. Hill, T. W., Kafer, E. Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solutions. Fungal Genetics Reports. 48 (1), 20-21 (2001).
  44. Rossini, A. J., et al. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research. 46 (9), 1942-1951 (2013).
  45. Sauvée, C., et al. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angewandte Chemie International Edition. 125 (41), 11058-11061 (2013).
  46. Phyo, P., et al. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems. Plant physiology. 175 (4), 1593-1607 (2017).
  47. White, P. B., Wang, T., Park, Y. B., Cosgrove, D. J., Hong, M. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. Journal of the American Chemical Society. 136 (29), 10399-10409 (2014).
  48. Jippo, T., Kamo, O., Nagayama, K. Determination of long-range proton-carbon 13 coupling constants with selective two-dimensional INEPT. Journal of Magnetic Resonance. 66 (2), 344-348 (1969).
  49. Morris, G. A. Sensitivity enhancement in nitrogen-15 NMR: polarization transfer using the INEPT pulse sequence. Journal of the American Chemical Society. 102 (1), 428-429 (1980).
  50. Cadars, S., et al. The refocused INADEQUATE MAS NMR experiment in multiple spin-systems: interpreting observed correlation peaks and optimising lineshapes. Journal of Magnetic Resonance. 188 (1), 24-34 (2007).
  51. Lesage, A., Bardet, M., Emsley, L. Through-bond carbon− carbon connectivities in disordered solids by NMR. Journal of the American Chemical Society. 121 (47), 10987-10993 (1999).
  52. Bennett, A. E., et al. Homonuclear radio frequency-driven recoupling in rotating solids. The Journal of Chemical Physics. 108 (22), 9463-9479 (1998).
  53. Lu, X., Guo, C., Hou, G., Polenova, T. Combined zero-quantum and spin-diffusion mixing for efficient homonuclear correlation spectroscopy under fast MAS: broadband recoupling and detection of long-range correlations. Journal of Biomolecular NMR. 61 (1), 7-20 (2015).
  54. Wang, T., Zabotina, O., Hong, M. Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. 생화학. 51 (49), 9846-9856 (2012).
  55. Wang, T., Yang, H., Kubicki, J. D., Hong, M. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations. Biomacromolecules. 17 (6), 2210-2222 (2016).
  56. Kirui, A., et al. Atomic Resolution of Cotton Cellulose Structure Enabled by Dynamic Nuclear Polarization Solid-State NMR. Cellulose. , (2019).
  57. Wang, T., et al. Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proceedings of the National Academy of Sciences of the United States of America. 110 (41), 16444-16449 (2013).
  58. Wang, T., Park, Y. B., Cosgrove, D. J., Hong, M. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis thaliana Primary Cell Walls: Evidence from Solid-State NMR. Plant Physiology. 168 (3), 871-884 (2015).
  59. Liao, S. Y., Lee, M., Wang, T., Sergeyev, I. V., Hong, M. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location. Journal of Biomolecular NMR. 64 (3), 223-237 (2016).
  60. Kang, X., et al. Lignin-Polysaccharide Interactions in Plant Secondary Cell Walls Revealed by Solid-State NMR. Nature Communications. 10, 347 (2019).
  61. Takahashi, H., et al. Rapid Natural-Abundance 2D 13C-13C Correlation Spectroscopy Using Dynamic Nuclear Polarization Enhanced Solid-State NMR and Matrix-Free Sample Preparation. Angewandte Chemie International Edition. 51 (47), 11766-11769 (2012).

Play Video

Cite This Article
Kirui, A., Dickwella Widanage, M. C., Mentink-Vigier, F., Wang, P., Kang, X., Wang, T. Preparation of Fungal and Plant Materials for Structural Elucidation Using Dynamic Nuclear Polarization Solid-State NMR. J. Vis. Exp. (144), e59152, doi:10.3791/59152 (2019).

View Video