Summary

Ein melanompatientenabgeleitetes Xenograft-Modell

Published: May 20, 2019
doi:

Summary

Patienten-abgeleitete Xenograft -Modelle (PDX) rekapitulieren die molekularen und biologischen Merkmale des Melanoms robuster und sind prädiktiver für die Therapiereaktion im Vergleich zu herkömmlichen auf Kunststoffgewebekulturen basierenden Assays. Hier beschreiben wir unser Standard-Betriebsprotokoll für die Etablierung neuer PDX-Modelle und die Charakterisierung/Experimentierung bestehender PDX-Modelle.

Abstract

Akkumulierende Beweise deuten darauf hin, dass sich molekulare und biologische Eigenschaften in Melanomzellen unterscheiden, die in traditionellen zweidimensionalen Gewebekulturgefäßen angebaut werden, im Vergleich zu in vivo bei menschlichen Patienten. Dies ist auf die Engpassauswahl von klonalen Populationen von Melanomzellen zurückzuführen, die in Abwesenheit physiologischer Bedingungen in vitro robust wachsen können. Darüber hinaus spiegeln die Reaktionen auf die Therapie in zweidimensionalen Gewebekulturen insgesamt nicht die Reaktionen auf die Therapie bei Melanompatienten wider, wobei die Meisten klinischen Studien die Wirksamkeit therapeutischer Kombinationen nicht Vitro. Obwohl die Xenogtransplantation von Melanomzellen in Mäuse den physiologischen In-vivo-Kontext liefert, der in zweidimensionalen Gewebekultur-Assays fehlt, haben die für die Engraftmentierung verwendeten Melanomzellen bereits eine Engpassauswahl für Zellen durchlaufen, die unter zweidimensionale Bedingungen, wenn die Zelllinie festgelegt wurde. Zu den irreversiblen Veränderungen, die als Folge des Engpasses auftreten, gehören Veränderungen der Wachstums- und Invasionseigenschaften sowie der Verlust bestimmter Teilpopulationen. Daher können Modelle, die den menschlichen Zustand in vivo besser rekapitulieren, therapeutische Strategien besser vorhersagen, die das Gesamtüberleben von Patienten mit metastasierendem Melanom effektiv erhöhen. Die vom Patienten abgeleitete Xenograft-Technik (PDX) beinhaltet die direkte Implantation von Tumorzellen vom menschlichen Patienten zu einem Mausempfänger. Auf diese Weise werden Tumorzellen konsequent unter physiologischen Belastungen in vivo angebaut und erleiden nie den zweidimensionalen Engpass, der die molekularen und biologischen Eigenschaften bewahrt, die beim menschlichen Patienten vorhanden sind. Bemerkenswerte PDX-Modelle, die von Organstandorten von Metastasen (d. h. Gehirn) abgeleitet wurden, zeigen eine ähnliche metastasierende Kapazität, während PDX-Modelle, die von therapienaiven Patienten und Patienten mit erworbener Therapieresistenz (d. h. BRAF/MEK-Hemmertherapie) abgeleitet wurden, ähnliche Empfindlichkeit gegenüber der Therapie.

Introduction

Präklinische Modelle sind entscheidend für alle Aspekte der translationalen Krebsforschung, einschließlich der Charakterisierung von Krankheiten, der Entdeckung umsetzbarer Schwachstellen, die für Krebs im Vergleich zu normalen Zellen einzigartig sind, und der Entwicklung wirksamer Therapien, die diese Schwachstellen, um das Gesamtüberleben der Patienten zu erhöhen. Im Melanombereich wurden Zehntausende von Zelllinienmodellen stark für das Arzneimittelscreening genutzt, wobei >4.000 von unserer Gruppe allein beigesteuert wurden (WMXXX-Serie). Diese Zelllinienmodelle wurden von Melanompatienten mit verschiedenen Formen des kutanen Melanoms (d. h. acral, uveal und oberflächliche Ausbreitung) und verschiedenen Genotypen (d. h. BRAFV600-mutant und Neuroblastom RAS viralen Onkogenhomolog [ NRAS Q61R-mutant]), die das Spektrum derKrankheit in der Klinik 1,2.

Die erfolgreichste, zielgerichtetese Therapiestrategie im Melanombereich ist eindeutig aus der genomischen Charakterisierung von Tumoren von Patienten hervorgegangen, die BRAF-Mutationen bei 50 % der Melanome3 und aus 2) präklinischen Untersuchungen identifiziert. Nutzung der Melanom-Zelllinienmodelle4. Die KOMBINATION braF/MEK-Hemmer wurde 2014 von der Food and Drug Administration (FDA) für die Behandlung von Patienten zugelassen, deren Melanome braFV600E/K-Mutationen aktivieren und eine Ansprechrate von >75%von 5aufweisen. Trotz dieser anfänglichen Wirksamkeit entsteht in fast jedem Fall eine Resistenz durch vielfältige intrinsische und erworbene Resistenzmechanismen und intratumorale Heterogenität. Leider rekapitulieren Zelllinienmodelle keine repräsentative biologische Heterogenität, wenn sie in zweidimensionaler Kultur in Kunststoffgefäßen angebaut werden, was ihr klinisch vorausschauendes Potenzial verschleiert, wenn Forscher versuchen, experimentell zu bestimmen Therapien, die bei Patienten mit einer bestimmten Form oder einem Genotyp des Melanoms wirksam sein könnten6. Das Verständnis, wie die intratumorale Heterogenität von Patienten am besten modelliert werden kann, wird es den Forschern ermöglichen, bessere therapeutische Modalitäten zu entwickeln, die therapieresistente Subpopulationen abtöten können, die das Scheitern aktueller Standardtherapien antreiben.

Der begrenzte Vorhersagewert von Zelllinienmodellen ist die Art und Weise, wie sie ursprünglich festgelegt werden. Irreversible Veränderungen treten in der klonalen Tumorlandschaft auf, wenn eine einzellige Suspension eines Patiententumors auf zweidimensionalen, plastischen Gewebekulturgefäßen angebaut wird, einschließlich Veränderungen des proliferativen und invasiven Potenzials, die Eliminierung spezifischer Subpopulationen und die Veränderung der genetischen Information7. Xenografts in Mäuse dieser Melanom-Zelllinienmodelle stellen die am häufigsten verwendete In-vivo-Plattform für präklinische Studien dar; Diese Strategie leidet jedoch auch unter der schlechten Rekapitulation komplexer Tumorheterogenität, die klinisch beobachtet wurde. Um dieses Manko zu überwinden, besteht ein wachsendes Interesse an der Integration ausgefeilterer präklinischer Melanommodelle, einschließlich des PDX-Modells. PDX-Modelle werden seit >30 Jahren verwendet, wobei wegweisende Studien an Lungenkrebspatienten eine Übereinstimmung zwischen dem Ansprechen der Patienten auf zytotoxische Wirkstoffe und der Reaktion des PDX-Modells vom selben Patienten 8 zeigten. In jüngster Zeit gab es den Antrieb, PDX-Modelle als Werkzeug der Wahl für präklinische Untersuchungen sowohl in der Industrie als auch in akademischen Zentren zu nutzen. PDX-Modelle sind aufgrund ihrer überlegenen Rekapitulation der Tumorheterogenität bei menschlichen Patienten klinisch relevanter für die Therapieoptimierung als Zelllinien-Xenografts9. Bei Melanomen gibt es immense Hürden, die das therapeutische Management fortgeschrittener Krankheiten stumpf machen10. Klinisch relevante PDX-Modelle wurden verwendet, um klinische Resistenzen zu modellieren und therapeutische Strategien mit klinisch verfügbaren Wirkstoffen zur Behandlung therapieresistenter Tumoren zu identifizieren11,12. Kurz gesagt, das hier vorgestellte Protokoll zur Generierung von PDX-Modellen erfordert die subkutane Implantation von frischem Gewebe aus primären oder metastasierenden Melanomen (die durch Biopsie oder Operation gesammelt werden) in NOD/scid/IL2-Receptor NULL (NSG) Mäuse. Verschiedene Variationen des methodischen Ansatzes werden von verschiedenen Gruppen verwendet; es existiert jedoch ein grundlegender Kern13.

Protocol

Die folgenden Tierprotokolle folgen den Richtlinien der humanen Ethikkommission des Wistar-Instituts und den Richtlinien für Tierpflege. 1. Melanom-Tumorgewebe-Sammlung Sammeln Sie Tumorgewebe (als Passage 0 bezeichnet) von Melanompatienten durch eine der folgenden Chirurgischen oder Biopsiemethoden. Für chirurgisches Exzisionsgewebe mindestens 1 g Gewebe (Resektemetastasen und primäre Läsionen) in Transportspeichermedien (RPMI 1640 + 0,1% Pilzzone + 0,2% Gentamicin) bei …

Representative Results

Tumorgewebe für Melanom-PDX-Modelle kann aus einer Vielzahl unterschiedlicher Quellen stammen und kann auch pro Wachstumsdynamik einzelner Modelle und der gewünschten Verwendung des PDX-Gewebes verarbeitet werden. Die Priorität bei der Erstellung eines PDX-Modells besteht darin, über genügend Material für die zukünftige Verwendung und DNA für die Charakterisierung zu verfügen (Abbildung 1). Sobald genügend Material auf der Bank liegt, kann Tumorgewebe in…

Discussion

Wir haben hier in beschrieben, dass PDX-Modelle von Melanomen mit Patientengewebe aus primären und metastasierenden Tumoren, Kernbiopsien und FNAs generiert werden. Bei direkter Eindringung in NSG-Mäuse stellen Tumoren ähnliche morphologische, genomische und biologische Eigenschaften dar wie die beim Patienten beobachteten. In dem Fall, in dem den Forschern nur eine geringe Menge Gewebe zur Verfügung steht, wie es bei FNAs häufig der Fall ist, ermöglicht die PDX-Technik die Erweiterung des Tumorgewebes für die DNA…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Die Autoren danken dem Wistar Institute Animal Facility, Microscopy Facility, Histotechnology Facility und Research Supply Center. Diese Studie wurde zum Teil durch Stipendien der U54 (CA224070-01), SPORE (CA174523), P01 (CA114046-07), der Dr. Miriam und Sheldon G. Adelson Medical Research Foundation und der Melanoma Research Foundation finanziert.

Materials

1 M Hepes SIGMA-ALDRICH CORPORATION Cat # H0887-100ML
100x PenStrep  Invitrogen Cat # 15140163
1x HBSS-/- (w/o Ca++ or Mg++) MED Cat # MT21-023-CV
2.5% Trypsin  SIGMA-ALDRICH CORPORATION Cat # T4549-100ML 10 mL aliquots stored at –20oC
BSA SIGMA-ALDRICH CORPORATION Cat # A9418-500G
Chlorhexidine Fisher Scientific Cat# 50-118-0313
Collagenase IV (2,000 u/mL) Worthington  Cat #4189 make up in HBSS-/- from Collagenase IV powder stock (Worthington #4189, u/mg indicated on bottle and varies with each lot); freeze 1
DMSO SIGMA-ALDRICH CORPORATION Cat # C6295-50ML
DNase SIGMA-ALDRICH CORPORATION Cat # D4527
EGTA (ethylene glycol bis(2-aminoethyl ether)-N,N,N’N’-tetraacetic acid) Merck Cat # 324626.25
FBS INVITROGEN LIFE TECHNOLOGIES Cat # 16000-044
Fungizone INVITROGEN LIFE TECHNOLOGIES Cat # 15290-018
Gentamicin FISHER SCIENTIFIC Cat # BW17518Z
Isoflurane HENRY SCHEIN ANIMAL HEALTH Cat # 050031
Leibovitz's L15 media  Invitrogen Cat # 21083027
Matrigel Corning Cat # 354230 Artificial extracellular matrix
Meloxicam HENRY SCHEIN ANIMAL HEALTHRequisition # ::Henry Schein Cat # 025115 1-5mg/kg, as painkiller
NOD/SCID/IL2-receptor null (NSG) Mice The Wistar Institute, animal facility breeding
PVA (polyvinyl alcohol) SIGMA-ALDRICH CORPORATION Cat # P8136-250G
RPMI 1640 Medium (Mod.) 1X with L-Glutamine Fisher Scientific Cat# MT10041CM
Scalpel Feather Cat # 2976-22
Virkon GALLARD-SCHLESINGER IND Cat # 222-01-06
Wound clips MikRon Cat #427631

References

  1. Garman, B., et al. Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines. Cell Reports. 21 (7), 1936-1952 (2017).
  2. Krepler, C., et al. A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma. Cell Reports. 21 (7), 1953-1967 (2017).
  3. Davies, H., et al. Mutations of the BRAF gene in human cancer. Nature. 417 (6892), 949-954 (2002).
  4. Paraiso, K. H., et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. British Journal Of Cancer. 102 (12), 1724-1730 (2010).
  5. Long, G. V., et al. Long-Term Outcomes in Patients With BRAF V600-Mutant Metastatic Melanoma Who Received Dabrafenib Combined With Trametinib. Journal of Clinical Oncology. 36 (7), 667-673 (2018).
  6. Hidalgo, M., et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery. 4 (9), 998-1013 (2014).
  7. Hausser, H. J., Brenner, R. E. Phenotypic instability of Saos-2 cells in long-term culture. Biochemical and Biophysical Research Communications. 333 (1), 216-222 (2005).
  8. Fiebig, H. H., et al. Development of three human small cell lung cancer models in nude mice. Recent Results In Cancer Research. 97, 77-86 (1985).
  9. Izumchenko, E., et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Annals of Oncology. 28 (10), 2595-2605 (2017).
  10. Shi, H., et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discovery. 4 (1), 80-93 (2014).
  11. Monsma, D. J., et al. Melanoma patient derived xenografts acquire distinct Vemurafenib resistance mechanisms. American Journal of Cancer Research. 5 (4), 1507-1518 (2015).
  12. Das Thakur, M., et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature. 494 (7436), 251-255 (2013).
  13. Meehan, T. F., et al. PDX-MI: Minimal Information for Patient-Derived Tumor Xenograft Models. 암 연구학. 77 (21), 62-66 (2017).
  14. Gao, H., et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine. 21 (11), 1318-1325 (2015).
  15. De La Rochere, P., et al. Humanized Mice for the Study of Immuno-Oncology. Trends in Immunology. 39 (9), 748-763 (2018).
check_url/kr/59508?article_type=t

Play Video

Cite This Article
Xiao, M., Rebecca, V. W., Herlyn, M. A Melanoma Patient-Derived Xenograft Model. J. Vis. Exp. (147), e59508, doi:10.3791/59508 (2019).

View Video