Summary

In Vitro Biochemical Assays using Biotin Labels to Study Protein-Nucleic Acid Interactions

Published: July 17, 2019
doi:

Summary

Presented here are protocols for in vitro biochemical assays using biotin labels that may be widely applicable for studying protein-nucleic acid interactions.

Abstract

Protein-nucleic acid interactions play important roles in biological processes such as transcription, recombination, and RNA metabolism. Experimental methods to study protein-nucleic acid interactions require the use of fluorescent tags, radioactive isotopes, or other labels to detect and analyze specific target molecules. Biotin, a non-radioactive nucleic acid label, is commonly used in electrophoretic mobility shift assays (EMSA) but has not been regularly employed to monitor protein activity during nucleic acid processes. This protocol illustrates the utility of biotin labeling during in vitro enzymatic reactions, demonstrating that this label works well with a range of different biochemical assays. Specifically, in alignment with previous findings using radioisotope 32P-labeled substrates, it is confirmed via biotin-labeled EMSA that MEIOB (a protein specifically involved in the meiotic recombination) is a DNA-binding protein, that MOV10 (an RNA helicase) resolves biotin-labeled RNA duplex structures, and that MEIOB cleaves biotin-labeled single-stranded DNA. This study demonstrates that biotin is capable of substituting 32P in various nucleic acid-related biochemical assays in vitro. 

Introduction

Protein-nucleic acid interactions are involved in many essential cellular processes such as DNA repair, replication, transcription, RNA processing, and translation. Protein interactions with specific DNA sequences within the chromatin are required for the tight control of gene expression at the transcriptional level1. Precise posttranscriptional regulation of numerous coding and noncoding RNAs necessitates extensive and complicated interactions between any protein and RNA2. These layers of gene expression regulatory mechanism comprise a cascade of dynamic intermolecular events, which are coordinated by interactions of transcription/epigenetic factors or RNA-binding proteins with their nucleic acid targets, as well as protein-protein interactions. To dissect whether proteins in vivo are directly or indirectly associated with nucleic acids and how such associations occur and culminate, in vitro biochemical assays are conducted to examine the binding affinity or enzymatic activity of proteins of interest on designed substrates of DNA and/or RNA.

Many techniques have been developed to detect and characterize nucleic acid-protein complexes, including the electrophoretic mobility shift assay (EMSA), also termed gel retardation assay or band shift assay3,4,5. EMSA is a versatile and sensitive biochemical method that is widely used for studying the direct binding of proteins with nucleic acids. EMSA relies on gel electrophoretic shift in bands, which are routinely visualized using chemiluminescence to detect biotin labels6,7, the fluorescence of fluorophore labels8,9, or by autoradiography of radioactive 32P labels10,11. Other purposes of biochemical studies are the identification and characterization of nucleic acid-processing activity of proteins, such as  nuclease-based reactions to assess the cleavage products from nucleic acid substrates12,13,14 and DNA/RNA structure-unwinding assays to evaluate helicase activities15,16,17.

In such enzymatic activity assays, the radioisotope-labeled or fluorophore-labeled nucleic acids are often used as substrates due to their high sensitivity. Analysis of radiographs of enzymatic reactions involving 32P labeled radiotracers has been found to be sensitive and reproducible18. Yet, in an increasing number of laboratories in the world, the usage of radioisotopes is restricted or even prohibited due to the health risks associated with potential exposure. In addition to biosafety concerns, other drawbacks are the required necessary equipment to conduct work with radioisotopes, required radioactivity license, short half-life of 32P (about 14 days), and gradual deterioration of the probe quality due to radiolysis. Thus, alternative non-isotopic methods have been developed (i.e., labeling the probe with fluorophores enables detection by fluorescent imaging19). However, a high-resolution imaging system is needed when using fluorescently labeled probes. Biotin, a commonly used label, readily binds to biological macromolecules such as proteins and nucleic acids. Biotin-streptavidin system operates efficiently and improves detection sensitivity without increasing non-specific background20,21. Besides EMSA, biotin is widely used for protein purification and RNA pull-down, among others22,23,24.

This protocol successfully uses biotin-labeled nucleic acids as substrates for in vitro biochemical assays that include EMSA, in addition to enzymatic reactions in which biotin has not been commonly used. The MEIOB OB domain is constructed and two mutants (truncation and point mutation) are expressed as GST fusion proteins25,26,27, as well as mouse MOV10 recombinant FLAG fusion protein16. This report highlights the effectiveness of this combined protocol for protein purification and biotin-labeled assays for miscellaneous experimental purposes.

Protocol

1. Protein preparation MEIOB and MOV10 expression constructs Generate cDNA expression constructs encoding mouse MEIOB-A, C, and E (Figure 1A) and MOV10. Set up the polymerase chain reaction (PCR) reactions for each fragment. Mix 1 μL of mouse cDNA (from C57BL/6 mouse testis), 1 μL of dNTP, 2 μL of 10 μM forward primer, 2 μL of 10 μM reverse primer, 1 μL of DNA polymerase, 25 μL of 2x PCR buffer, an…

Representative Results

The protein structure of MEIOB and the expression constructs used in this study are illustrated in Figure 1A. OB folds in MEIOB are compact barrel-like structures that can recognize and interact with single-stranded nucleic acids. One of the OB domains (aa 136-307, construct A) binds single stranded DNA (ssDNA), the truncated protein (aa 136-178 truncations, construct C) and the point mutant form (R235A mutation, construct E) of MEIOB do not have DNA-binding activity<sup cla…

Discussion

Investigating protein-nucleic acid interactions is critical to our understanding of molecular mechanisms underlying diverse biological processes. For example, MEIOB is a testis-specific protein essential for meiosis and fertility in mammals25,26,27. MEIOB contains an OB domain that binds to single-stranded DNA and exhibits 3' to 5' exonuclease activity26, which directly relates to its ph…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank P. Jeremy Wang (University of Pennsylvania) for helpful edits and discussions. We also thank Sigrid Eckardt for language editing. K. Z. was supported by National Key R&D Program of China (2016YFA0500902, 2018YFC1003500) and National Natural Science Foundation of China (31771653). L. Y. was supported by National Natural Science Foundation of China (81471502, 31871503) and Innovative and Entrepreneurial Program of Jiangsu Province. J. N. was supported by Zhejiang Medical Science and Technology Project (2019KY499). M. L. was supported by grants of National Natural Science Foundation of China (31771588) and the 1000 Youth Talent Plan.

Materials

Equipment
Centrifuge Eppendorf, Germany 5242R
Chemiluminescent Imaging System Tanon, China 5200
Digital sonifer Branson, USA BBV12081048A 450 Watts; 50/60 HZ
Semi-dry electrophoretic blotter Hoefer, USA TE77XP
Tube Revolver  Crystal, USA 3406051
UV-light cross-linker UVP, USA CL-1000
Materials
Amicon Ultra-4 Centrifugal Filter  Milipore, USA UFC801096 4 ml/10 K
Nylon membrane Thermo Scientific, USA TG263940A
TC-treated Culture Dish Corning, USA 430167 100 mm 
TC-treated Culture Dish Corning, USA 430597 150 mm 
Microtubes tubes AXYGEN, USA MCT-150-C 1.5 mL 
Tubes Corning, USA 430791 15 mL
Reagents 
Ampicillin SunShine Bio, China 8h288h28
Anti-FLAG M2 magnetic beads Sigma, USA M8823
ATP Thermo Scientific, USA 591136
BCIP/NBT Alkaline Phosphatase Color Development Kit Beyotime, China C3206
CelLyticTM M Cell Lysis Reagent  Sigma, USA 107M4071V
ClonExpress II one step cloning kit  Vazyme, China C112
Chemiluminescent Nucleic Acid Detection Kit Thermo Scientific, USA T1269950
dNTP Sigma-Aldrich, USA DNTP100-1KT
DMEM Gibco, USA 10569044
DPBS buffer Gibco, USA 14190-136
EDTA Invitrogen, USA AM9260G 0.5 M
EDTA free protease inhibitor cocktail Roche, USA 04693132001
EndoFree Maxi Plasmid Kit  Vazyme, China  
DC202
FastPure Gel DNA Extraction Mini Kit Vazyme, China DC301-01
FBS Gibco, USA 10437028
FLAG peptide Sigma, USA F4799
Glycerol Sigma, USA SHBK3676
GST Bulk Kit GE Healthcare, USA 27-4570-01
HEPES buffer Sigma, USA SLBZ2837 1 M 
IPTG Thermo Scientific, USA 34060
KoAc Sangon Biotech, China 127-08-02
Lipofectamin 3000 Transfection Reagent Thermo Scientific, USA L3000001
MgCl2 Invitrogen, USA AM9530G 1 M
NaCl Invitrogen, USA AM9759
 
5 M 
NP-40 Amresco, USA M158-500ML
Opti-MEM medium Gibco, USA 31985062
PBS Gibco, USA 10010023 PH 7.4
RNase Inhibitor Promega, USA N251B
Streptavidin alkaline phosphatase Promega, USA V5591
TBE Invitrogen, USA 15581044
Tris-HCI Buffer  Invitrogen, USA 15567027 1 M, PH 7.4
Tris-HCI Buffer  Invitrogen, USA 15568025 1 M, PH 8.0
Tween-20 Sangon Biotech, China A600560

References

  1. Bai, S., et al. Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development. 145 (13), (2018).
  2. Watanabe, T., Lin, H. Posttranscriptional regulation of gene expression by Piwi proteins and piRNAs. Molecular Cell. 56 (1), 18-27 (2014).
  3. Alonso, N., Guillen, R., Chambers, J. W., Leng, F. A rapid and sensitive high-throughput screening method to identify compounds targeting protein-nucleic acids interactions. Nucleic Acids Research. 43 (8), 52 (2015).
  4. Hwang, H., Myong, S. Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. Chemical Society Reviews. 43 (4), 1221-1229 (2014).
  5. Gustafsdottir, S. M., et al. In vitro analysis of DNA-protein interactions by proximity ligation. Proceedings of the National Academy of Sciences of the United States of America. 104 (9), 3067-3072 (2007).
  6. Li, Y., Jiang, Z., Chen, H., Ma, W. J. A modified quantitative EMSA and its application in the study of RNA–protein interactions. Journal of Biochemical and Biophysical Methods. 60 (2), 85-96 (2004).
  7. Fahrer, J., Kranaster, R., Altmeyer, M., Marx, A., Burkle, A. Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length. Nucleic Acids Research. 35 (21), 143 (2007).
  8. Hsieh, Y. W., Alqadah, A., Chuang, C. F. An Optimized Protocol for Electrophoretic Mobility Shift Assay Using Infrared Fluorescent Dye-labeled Oligonucleotides. Journal of Visualized Experiments. (117), (2016).
  9. Yan, G., et al. Orphan Nuclear Receptor Nur77 Inhibits Cardiac Hypertrophic Response to Beta-Adrenergic Stimulation. Molecular and Cellular Biology. 35 (19), 3312-3323 (2015).
  10. Hellman, L. M., Fried, M. G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nature Protocols. 2 (8), 1849-1861 (2007).
  11. Fillebeen, C., Wilkinson, N., Pantopoulos, K. Electrophoretic mobility shift assay (EMSA) for the study of RNA-protein interactions: the IRE/IRP example. Journal of Visualized Experiments. (94), (2014).
  12. Nishida, K. M., et al. Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature. 555 (7695), 260-264 (2018).
  13. Anders, C., Jinek, M. In vitro enzymology of Cas9. Methods in Enzymology. 546, 1-20 (2014).
  14. Zhao, H., Zheng, J., Li, Q. Q. A novel plant in vitro assay system for pre-mRNA cleavage during 3′-end formation. Plant Physiology. 157 (3), 1546-1554 (2011).
  15. Vourekas, A., et al. The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes & Development. 29 (6), 617-629 (2015).
  16. Gregersen, L. H., et al. MOV10 Is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Molecular Cell. 54 (4), (2014).
  17. Talwar, T., et al. The DEAD-box protein DDX43 (HAGE) is a dual RNA-DNA helicase and has a K-homology domain required for full nucleic acid unwinding activity. The Journal of Biological Chemistry. 292 (25), 10429-10443 (2017).
  18. Nagy, N. M., Konya, J. Study of fast and slow consecutive processes by heterogeneous isotope exchange using P-32 radiotracer. Journal of Radioanalytical And Nuclear Chemistry. 318 (3), 2349-2353 (2018).
  19. Wilson, D. L., Beharry, A. A., Srivastava, A., O’Connor, T. R., Kool, E. T. Fluorescence Probes for ALKBH2 Allow the Measurement of DNA Alkylation Repair and Drug Resistance Responses. Angewandte Chemie. 57 (39), 12896-12900 (2018).
  20. Wilchek, M., Bayer, E. A., Livnah, O. Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunology Letters. 103 (1), 27-32 (2006).
  21. Trippier, P. C. Synthetic strategies for the biotinylation of bioactive small molecules. ChemMedChem. 8 (2), 190-203 (2013).
  22. Rodgers, J. T., Patel, P., Hennes, J. L., Bolognia, S. L., Mascotti, D. P. Use of biotin-labeled nucleic acids for protein purification and agarose-based chemiluminescent electromobility shift assays. Analytical Biochemistry. 277 (2), 254-259 (2000).
  23. Panda, A. C., Martindale, J. L., Gorospe, M. Affinity Pulldown of Biotinylated RNA for Detection of Protein-RNA Complexes. Bio-Protocol. 6 (24), (2016).
  24. Bednarek, S., et al. mRNAs biotinylated within the 5′ cap and protected against decapping: new tools to capture RNA – protein complexes. Philosophical Transactions Of the Royal Society B-Biological Sciences. 373 (1762), (2018).
  25. Souquet, B., et al. MEIOB Targets Single-Strand DNA and Is Necessary for Meiotic Recombination. Plos Genetics. 9 (9), (2013).
  26. Luo, M., et al. MEIOB exhibits single-stranded DNA-binding and exonuclease activities and is essential for meiotic recombination. Nature Communications. 4, 2788 (2013).
  27. Xu, Y., Greenberg, R. A., Schonbrunn, E., Wang, P. J. Meiosis-specific proteins MEIOB and SPATA22 cooperatively associate with the single-stranded DNA-binding replication protein A complex and DNA double-strand breaks. Biology of Reproduction. 96 (5), 1096-1104 (2017).
check_url/kr/59830?article_type=t

Play Video

Cite This Article
Yu, L., He, W., Xie, J., Guo, R., Ni, J., Zhang, X., Xu, Q., Wang, C., Yue, Q., Li, F., Luo, M., Sun, B., Ye, L., Zheng, K. In Vitro Biochemical Assays using Biotin Labels to Study Protein-Nucleic Acid Interactions. J. Vis. Exp. (149), e59830, doi:10.3791/59830 (2019).

View Video