Summary

研究卡埃纳哈布迪炎细胞结构和细胞形态学的定量方法

Published: July 05, 2019
doi:

Summary

本研究概述了使用免费提供的图像处理工具对C. elegans的突触大小和定位、肌肉形态和线粒体形状的定量测量。这种方法允许将来在C.elegans的研究定量比较由于基因突变而导致的组织和细胞器结构变化的程度。

Abstract

定义疾病背后的细胞机制对于开发新的治疗方法至关重要。经常用来解开这些机制的策略是引入候选基因的突变,并定性地描述组织和细胞细胞器的形态变化。然而,定性描述可能无法捕捉细微的型值差异,可能歪曲人群中个体的型型变化,并且经常被主观地评估。本文介绍了定量方法,利用激光扫描共聚焦显微镜与市售的生物图像处理软件相结合,研究线虫卡埃纳哈布迪炎的组织和细胞器的形态。对影响突触完整性(大小和综合荧光水平)、肌肉发育(肌肉细胞大小和肌苷丝长度)和线粒体形态(循环和大小)的表型进行了定量分析,以了解基因突变对这些细胞结构的影响。这些定量方法并不限于此处描述的应用,因为它们可以很容易地用于定量评估线虫中其他组织和细胞器的形态,以及其他模型生物体中的形态。

Introduction

线虫卡埃内沙布迪炎(C.elegans)越来越多地被用作一个模型系统,以揭示人类疾病所涉及的生物和分子过程。成年线虫的体长略高于1毫米,可以产生多达300个鸡蛋的大卵1。孵化后,C.elegans只需3-4天才能成年,并存活2至3周。由于其易于培养,C. elegans是目前最抢手的体内动物模型之一,用于进行经济高效、快速的药物筛选,以确定人类疾病的治疗药物。此外,其遗传保护,明确界定的行为范式,透明的身体荧光或光显微镜,以及易于基因操作,使研究细胞和分子后果的基因突变很容易实现3. C. elegans基因组与人类基因共享大约 60-80% 的正畸,其中约 40% 与疾病相关。在C.elegans中建模和研究的一些人类疾病包括神经退行性疾病(阿尔茨海默氏病、帕金森病、肌萎缩性侧索硬化症、Charcot-Marie-Tooth 病)、肌肉相关疾病(杜琴肌肉萎缩症),和代谢性疾病(高血糖)2,4。在大多数人类疾病中,疾病引起的细胞和细胞器定位和形态变化发生,这很容易在线虫模型中评估。

荧光标记已广泛用于标记组织和细胞器,用于显微镜下的动态可视化。然而,在C.elegans中,评估由于基因突变引起的形态不规则性的传统方法主要依靠视觉描述。虽然定性评估可以涵盖更广泛的表型描述范围(突触形态学、GFP结块、特定斧头形状、肌肉纤维厚度等),并提供形态变化的鸟瞰图,但它们不太适合比较不同组之间的小差异。此外,定性评估以视觉、主观评估为基础,这可能导致对形态异常的高估或低估。最后,定性观测结果也可能因个人而异,给数据复制造成困难。

近年来,已经开发出一些用户友好、现成的计算算法,可以定量分析图像。然而,这种图像分析软件的利用,在一些形态学研究,特别是有关身体壁肌和线粒体的研究,在C.elegans的研究已经滞后。为了改进C.elegans的基本结构分析,试验了一些现成的开源图像分析软件,以定量比较基因突变对肌肉线粒体、身体壁肌和突触的影响形态。这些实验程序详细概述了这些程序(Fiji、ilastik、CellProfiler、SQUASSH)如何用于评估突触大小和突触蛋白定位、体壁肌肉面积和纤维长度以及线粒体尺寸和线粒体尺寸的变化。由于线虫的基因突变而循环。

Protocol

1. C. 埃莱甘菌株的生长与维持 种子线虫生长介质 (NGM, 参见材料表) 琼脂板与300 μL的缓慢生长的大肠杆菌菌株OP50在层流柜。 将 NGM 琼脂板留在层流柜中晾干。注:在没有层流柜的情况下,板可以留在长凳上干燥,但更容易受到污染。 将至少20只动物转移到两个OP50种子NGM琼脂板中,以有工作种群。有两种主要的方式来转移动物。 采摘:使用热消毒?…

Representative Results

C. elegans是研究不同组织和细胞器形态的理想模型有机体,由于其简单、已知的细胞系、透明度和可用的工具。在这里,我们提供定量方法,用于研究细胞器(例如线粒体)和组织,包括使用实时荧光成像和免费生物图像处理软件的突触和肌肉。 正常突触开发需要严格管理 MEC-17 表达 <p class="jove_content" fo:keep-together…

Discussion

形态变异经常通过手工计算明显差异或使用任意阈值来确定与野生型表型相比的缺陷来评估。然而,最近,定量方法被用于形态学的比较研究,以无偏见的方式准确测量和描述细胞和亚细胞水平上的变化。识别表型之间微妙但与生物学相关差异的能力是了解控制由环境因素或遗传疾病引起的形态变化的基本分子机制的有力手段。计算能力和显微镜成像分辨率的不断提高,加上C. elegans遗传学的易?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 Neumann 实验室的成员进行了宝贵的讨论和投入。一些菌株由CGC提供,由NIH研究基础设施项目办公室(P40 OD010440)资助。作者感谢WormBase提供了丰富的关于C.elegans的信息,并感谢莫纳什大学的莫纳什微成像提供了仪器、培训和技术支持。这项工作得到了CMTAA研究资助(2015年和2018年)的支持,NHMRC项目赠款1101974和1099690授予了B.N.

Materials

Agar-agar Merck 1.01614.1000
Agarose Invitrogen 16500-500
Confocal microscope Leica TCS SP8 Inverted platform
Fluorescence microscope Carl Zeiss AG Zeiss Axio Imager M2
Glass coverslips #1 Thermo scientifique MENCS22221GP
Glass coverslips #1.5 Zeiss 474030-9000-000 Made by SCHOTT
Glass slides Thermo scientifique MENS41104A/40
Light LED Schott KL 300 LED
Stereo Microscope Olympus SZ51
Tryptone (Peptone from casein) Merck 107213 Ingredients for Lysogeny Broth (LB) medium
Yeast Extract Merck 103753 Ingredients for Lysogeny Broth (LB) medium
Sodium chloride Merck 106404 Ingredients for Lysogeny Broth (LB) medium
Peptone (Peptone from meat) Merck 107214 Ingredients for Nematode Growth Media (NGM) agar
Agar Sigma A1296 Ingredients for Nematode Growth Media (NGM) agar
Sodium chloride Merck 106404 Ingredients for Nematode Growth Media (NGM) agar
Cholesterol Sigma C8667-25G Ingredients for Nematode Growth Media (NGM) agar
Calcium chloride Merck 102382 Ingredients for Nematode Growth Media (NGM) agar
Magnesium sulfate Merck 105886 Ingredients for Nematode Growth Media (NGM) agar
Dipotassium phosphate Merck 105101 Ingredients for Nematode Growth Media (NGM) agar
Potassium dihydrogen phosphate Merck 104873 Ingredients for Nematode Growth Media (NGM) agar
Disodium phosphate Merck 106586 Ingredients for M9 buffer
Sodium chloride Merck 106404 Ingredients for M9 buffer
Potassium dihydrogen phosphate Merck 104873 Ingredients for M9 buffer
Magnesium sulfate Merck 105886 Ingredients for M9 buffer
Pasteur pipette Corning CLS7095D5X-200EA
Petri dishes Corning CLS430589-500EA
Platinum wire Sigma 267201-2G
Spatula Met-app 2616
Tetramisole hydrochloride Sigma L9756-5G

References

  1. Brenner, S. The genetics of Caenorhabditis elegans. 유전학. , (1974).
  2. Markaki, M., Tavernarakis, N. Modeling human diseases in Caenorhabditis elegans. Biotechnology Journal. 5 (12), 1261-1276 (2010).
  3. Laranjeiro, R., Harinath, G., Burke, D., Braeckman, B. P., Driscoll, M. Single swim sessions in C. elegans induce key features of mammalian exercise. BMC Biology. , (2017).
  4. Alexander, A. G., Marfil, V., Li, C. Use of C. elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Frontiers in Genetics. , (2014).
  5. Zheng, C., Jin, F. Q., Chalfie, M. Hox Proteins Act as Transcriptional Guarantors to Ensure Terminal Differentiation. Cell Reports. 13 (7), 1343-1352 (2015).
  6. Koushika, S. P., et al. Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. Journal of Neuroscience. 24 (16), 3907-3916 (2004).
  7. Byrne, J. J., et al. Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. Cellular and Molecular Life Sciences. , (2019).
  8. Campagnola, P. J., et al. Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues. Biophysical Journal. 82 (1), 493-508 (2002).
  9. Schindelin, J., et al. Fiji: An open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  10. Sommer, C., Straehle, C., Kothe, U., Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. , (2011).
  11. Mondal, S., Ahlawat, S., Koushika, S. P. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish. Journal of Visualized Experiments. , (2012).
  12. Paul, G., Cardinale, J., Sbalzarini, I. F. Coupling image restoration and segmentation: A generalized linear model/bregman perspective. International Journal of Computer Vision. , (2013).
  13. Rizk, A., et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nature Protocols. 9, 586-586 (2014).
  14. Akella, J. S., et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature. 467 (7312), 218-222 (2010).
  15. Neumann, B., Hilliard, M. A. Loss of MEC-17 leads to microtubule instability and axonal degeneration. Cell Reports. 6 (1), 93-103 (2014).
  16. Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B., Nachury, M. V. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proceedings of the National Academy of Sciences of the United States of America. 107 (50), 21517-21522 (2010).
  17. Teoh, J. -. S., Wang, W., Chandhok, G., Pocock, R., Neumann, B. Development and maintenance of synaptic structure is mediated by the alpha-tubulin acetyltransferase MEC-17/αTAT1. bioRxiv. 84, 522904-522904 (2019).
  18. Bird, T. D. . Charcot-Marie-Tooth Neuropathy Type 2. , (1998).
  19. Chandhok, G., Lazarou, M., Structure Neumann, B. Structure, function, and regulation of mitofusin-2 in health and disease. Biological Reviews. 93 (2), 933-949 (2018).
  20. Soh, M. S., Cheng, X., Liu, J., Neumann, B. Disruption of genes associated with Charcot-Marie-Tooth type 2 lead to common behavioural, cellular and molecular defects in Caenorhabditis elegans. bioRxiv. , 605584 (2019).
  21. Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J., Ryan, M. T. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nature Communications. , (2018).
  22. Zhu, P. -. P., et al. Intra- and Intermolecular Domain Interactions of the C-terminal GTPase Effector Domain of the Multimeric Dynamin-like GTPase Drp1. Journal of Biological Chemistry. 279 (34), 35967-35974 (2004).
  23. Osellame, L. D., et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. Journal of Cell Science. , (2016).
  24. Dima, A. A., et al. Comparison of segmentation algorithms for fluorescence microscopy images of cells. Cytometry Part A. 79 (7), 545-559 (2011).
  25. Trevisan, T., et al. Manipulation of Mitochondria Dynamics Reveals Separate Roles for Form and Function in Mitochondria Distribution. Cell Reports. , (2018).
check_url/kr/59978?article_type=t

Play Video

Cite This Article
Teoh, J., Soh, M. S., Byrne, J. J., Neumann, B. Quantitative Approaches for Studying Cellular Structures and Organelle Morphology in Caenorhabditis elegans. J. Vis. Exp. (149), e59978, doi:10.3791/59978 (2019).

View Video