Summary

铁限分枝杆菌产生的细胞外囊泡的分离和特征

Published: October 31, 2019
doi:

Summary

结核分枝杆菌显示,由于低铁条件,细胞外囊泡的产量增加并释放。这项工作详细介绍了产生低铁条件的协议,以及针对缺铁而释放的分菌外囊泡的纯化和表征方法。

Abstract

分枝杆菌,包括人类结核病的病原体结核分枝杆菌(Mtb),自然释放含有免疫活性分子的细胞外囊泡(EV)。关于囊泡生物成因的分子机制、囊泡的含量及其在病原体-宿主界面中的作用的知识非常有限。解决这些问题需要严格的EV隔离、纯化和验证程序。以前,当M. 结核病受到铁限制时,囊泡的产生会增强,Mtb 在宿主环境中遇到这种情况。这里介绍了一个完整和详细的协议,从缺铁的分枝杆菌分离和纯化EV。采用定量和定性方法验证纯化EV。

Introduction

分枝杆菌细胞外囊泡(MEVs)是膜结合的纳米颗粒,60~300nm大小,由快速生长和缓慢生长的分枝杆菌1自然释放。致病性分枝杆菌释放的MEVs通过免疫活性蛋白、脂质和糖脂以浓缩和保护方式分泌的宿主相互作用的机制2,3,4。为了描述MEV的特征并了解其生物发生和功能,严格而高效的囊泡纯化和验证方法至关重要。到目前为止,MEV已被分离出在富含铁介质1,5,6,7,8的分枝杆菌的培养中。

然而,以前的工作表明,铁限制极大地刺激了Mtb的囊泡释放,可能通过mycobactin捕获铁,一种在MEVs9中分泌的侧磷酸盐。虽然已经描述了从高铁培养的Mtb培养的MEV分离的程序,但没有报告从低铁培养物获得MEV的有效方法。因此,此方法的目标是分离、纯化和量化从低铁培养物中获得的 MEV,以便它们可用于生化和功能测定以及分析分枝杆菌中囊泡生产的遗传决定因素。

Protocol

1. 制备铁耗定义介质 在塑料容器中溶解5克KH2 PO 4、5gL-芦笋、20 mL甘油和2克脱离子水中的脱离子水,制备1升最小介质(MM)。避免使用玻璃以防止铁污染。将 pHH 调节到 6.8,带 5 N NaOH,用水将体积调节到 1 L。 加入 50 g 金属合合树脂 (MCR),在 4°C 下使用磁性搅拌棒轻轻搅拌 24 小时。通过带塑料接收器的 0.22 μm 过滤单元对 MCR 进行消毒和去除。为了加速过滤和防止?…

Representative Results

MEV通过在密度梯度中的差分沉淀得到纯化(图1,图2)。在所述条件下,MEV主要以梯度分数3(F3)分离,对应于25%的碘二醇。这一结论基于对蛋白质、膜脂的检测、完整MEV的微观可视化、纳米颗粒大小分布以及抗病毒抗血清的正反应(图2,图3)。向菌落形成单位(CCFUs)规范化的蛋?…

Discussion

多种纯化真核细胞衍生体外体的方法已经开发12。相比之下,关于纯化细菌衍生EV7的有效方法的信息有限。Mtb衍生的EV的有效分离需要考虑生长这种致病性分枝杆菌的内在困难。Mtb 的分部时间长(±24 小时),应在生物安全三级 (BSL-3) 条件下处理。因此,优化MEV隔离方法的效率非常重要。由于分枝杆菌释放糖脂和其他疏水性分子,聚合和容易污染粗MEV制剂到?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢拉斐尔·普拉多斯-罗萨莱斯分享了抗MEV抗血清和纳夫内特多格拉执行纳米粒子跟踪分析。

Materials

Amicon stirred cell Model 108 EMD Milipore UFSC40001 Cell Ultrafiltration system
BD Polypropilene 225 ml conical tubes Fisher 05-538-61 Conical centrifuge tubes
Biomax 100-kDa cut-off ultrafiltration membrane EMD Milipore PBHK07610 Ultrafiltration membrane
Chelex-100 resin Bio-Rad 142-2842 Metal chelating resin
Middlebrook 7H10 Agar BD Difco 262710 Mycobacterial Agar plates
Middlebrook 7H9 Broth BD Difco 271310 Mycobacterial broth medium
Nitro cellulose blotting membrane GE Healthcare 10600001 Blotting Membrane
Optiprep Sigma D1556 Iodixanol
Polycarbonate ultra centrifugation tubes 25 x 89 mm Beckman Coulter 355618 Polycarbonate ultra centrifugation tubes 25 x 89 mm
Polypropylene thin walled centrifuge tube 13×15 mm Beckman Coulter 344059 Polypropylene thin walled centrifuge tube 13×15 mm
Protein Assay dye BioRad 5000006 Bradford Protein Staining
SYPRO Ruby Molecular Probes S12000 Ultrasensitive protein stain
TMA-DPH Molecular Probes T204 1-(4-Trimethylammoniumphenyl)-6-Phenyl-1,3,5-Hexatriene p-Toluenesulfonate
Vacuum filtration flasks CellPro V50022 Filter Unit

References

  1. Prados-Rosales, R., et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. Journal of Clinical Investigation. 121, 1471-1483 (2011).
  2. Gupta, S., Rodriguez, G. M. Mycobacterial extracellular vesicles and host pathogen interactions. Pathogens and Disease. 76 (4), (2018).
  3. Athman, J. J., et al. Bacterial Membrane Vesicles Mediate the Release of Mycobacterium tuberculosis Lipoglycans and Lipoproteins from Infected Macrophages. Journal of Immunology. 195, 1044-1053 (2015).
  4. Athman, J. J., et al. Mycobacterium tuberculosis Membrane Vesicles Inhibit T Cell Activation. Journal of Immunology. 198, 2028-2037 (2017).
  5. Rath, P., et al. Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proceedings of the National Academy of Science U.S.A. 110, E4790-E4797 (2013).
  6. White, D. W., Elliott, S. R., Odean, E., Bemis, L. T., Tischler, A. D. Mycobacterium tuberculosis Pst/SenX3-RegX3 Regulates Membrane Vesicle Production Independently of ESX-5 Activity. mBio. 9, pii 00778 (2018).
  7. Dauros Singorenko, P., et al. Isolation of membrane vesicles from prokaryotes: a technical and biological comparison reveals heterogeneity. Journal of Extracellular Vesicles. 6, 1324731 (2017).
  8. Prados-Rosales, R., Brown, L., Casadevall, A., Montalvo-Quiros, S., Luque-Garcia, J. L. Isolation and identification of membrane vesicle-associated proteins in Gram-positive bacteria and mycobacteria. MethodsX. 1, 124-129 (2014).
  9. Prados-Rosales, R., et al. Role for Mycobacterium tuberculosis membrane vesicles in iron acquistion. Journal of Bacteriology. 196, 1250-1256 (2014).
  10. Sanders, E. Aseptic Laboratory Techniques: Plating Methods. Journal of Visualized Experiments. 63, e3064 (2012).
  11. Harlow, E., Lane, L. . Antibodies. A laboratory manual. , (1988).
  12. Lotvall, J., et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles. 3, 26913 (2014).
check_url/kr/60359?article_type=t

Play Video

Cite This Article
Gupta, S., Marcela Rodriguez, G. Isolation and Characterization of Extracellular Vesicles Produced by Iron-limited Mycobacteria. J. Vis. Exp. (152), e60359, doi:10.3791/60359 (2019).

View Video