Summary

肿瘤细胞外侧尾静脉注射后肺转移的病理分析

Published: May 20, 2020
doi:

Summary

静脉注射癌细胞常用于转移研究,但转移性肿瘤负担可能难以分析。在本文中,我们展示了转移的尾静脉注射模型,并包括一种分析所得转移性肺肿瘤负担的新方法。

Abstract

转移是大多数癌症患者发病和死亡的主要原因,在小鼠中进行临床前建模可能具有挑战性。很少有自发性转移模型可用。因此,涉及尾静脉注射合适细胞系的实验转移模型是转移研究的主要内容。当癌细胞被注射到外侧尾静脉时,肺是它们首选的定植部位。该技术的一个潜在局限性是转移性肺肿瘤负担的准确定量。虽然一些研究人员对预定义大小的大转移酶进行计数和/或包括组织切片后的微转移酶,但其他研究人员则确定相对于正常组织区域的转移性病变区域。当转移负担很高时,这两种定量方法都可能非常困难。在本文中,我们展示了肺转移的静脉注射模型,然后使用图像分析软件量化转移性肿瘤负荷的先进方法。该过程允许研究多个终点参数,包括平均转移大小,转移总数和总转移面积,以提供全面的分析。此外,这种方法已经过美国兽医病理学家学会(SEK)认证的兽医病理学家委员会的审查,以确保准确性。

Introduction

尽管转移是一个高度复杂且低效的过程1,但转移是癌症患者发病率和死亡率的重要因素2。事实上,大多数癌症相关死亡归因于疾病的转移性传播34。为了使肿瘤细胞成功转移,它们必须从原发部位脱离,通过相邻的基质侵入,侵入血液循环或淋巴管,行进到次级部位的毛细血管床,外渗到次级组织,并增殖或生长形成转移性病变5。小鼠模型的使用对于进一步了解负责转移性播种和生长的分子机制至关重要67。在本文中,我们专注于乳腺癌转移,为此经常使用转基因小鼠模型和移植方法 – 每种方法都有自己的一套优点和局限性。

基因工程乳腺肿瘤模型利用乳腺特异性启动子,包括 MMTV-LTR (小鼠乳腺肿瘤病毒长末端重复)和 WAP (乳清酸性蛋白),以驱动乳腺上皮中转基因的表达8。包括中位T抗原(PyMT)、 ErbB2/Neuc-MycWnt-1和猿猴病毒40(SV40)在内的癌基因已经以这种方式表达910111213,虽然这些遗传模型有助于研究原发性肿瘤的发生和进展,但很少有易转移至远处器官的遗传基因。此外,这些遗传小鼠模型通常比自发或实验转移模型花费更多的时间和成本。鉴于大多数基因工程乳腺肿瘤模型在研究转移方面的局限性,移植技术已成为研究这一复杂过程的有吸引力的方法。这包括原位、尾静脉、心内和颅内注射合适的细胞系。

虽然几种乳腺癌细胞系在将原位注射到乳腺脂肪垫1415后容易转移,但转移性肿瘤负荷的一致性和可重复性可能是一个挑战,并且此类研究的持续时间可能长达数月。特别是对于评估肺转移,静脉注射到尾静脉通常是一种更具可重复性和时间有效的方法,转移性扩散通常发生在几周内。然而,由于静脉注射模型绕过了转移性级联反应的初始步骤,因此在解释这些研究的结果时必须小心。在这个演示中,我们展示了乳房肿瘤细胞的尾静脉注射以及准确而全面的分析方法。

尽管研究界在了解乳腺癌转移的复杂过程方面取得了重大进展,但据估计,目前有超过150,000名女性患有转移性乳腺癌16。在IV期乳腺癌患者中,>36%的患者有肺转移17;然而,位点特异性模式和转移发生率可能因分子亚型而异18192021。乳腺癌相关肺转移患者的中位生存期仅为 21 个月,这凸显了确定该疾病的有效治疗方法和新型生物标志物的必要性17。实验转移模型的使用,包括静脉注射肿瘤细胞,将继续推进我们对这一重要临床挑战的了解。当与本方案中描述的数字成像病理学和转移性肺肿瘤负荷分析方法相结合时,尾静脉注射是乳腺癌转移研究的宝贵工具。

Protocol

动物使用遵循俄勒冈州立大学机构动物护理和使用委员会(IACUC)批准的协议2007A0120-R4(PI:Gina Sizemore博士)下的大学实验动物资源(ULAR)法规。 1. 乳腺癌细胞尾静脉注射 制备注射用细胞和注射器 根据要使用的小鼠数量和细胞浓度,接种适当数量的细胞。注意:注射的细胞数量和转移发生的时间将取决于所使用的细胞系,需要优化。在该演示中,将1 x 10…

Representative Results

如果使用未标记的细胞进行尾静脉注射,则可能难以确认肺定植,直到(1)如果可以观察到大转移酶,则尸检时间或(2)如果存在微观转移,则在组织学分析之后。随着广泛的转移性肺肿瘤负担,小鼠将有劳动呼吸。与任何肿瘤研究一样,在整个研究期间应仔细监测小鼠。使用标记细胞是确认尾静脉注射成功的简单方法;因此,在演示中使用了荧光素酶标记的MDA-MB-231细胞。然而,根据实验设计和…

Discussion

随着研究人员继续使用静脉注射肿瘤细胞作为转移的实验模型,缺乏分析由此产生的转移性肿瘤负担的标准实践。在某些情况下,可以在宏观上观察到操作特定细胞系和/或使用化合物时转移性肿瘤负担的显着差异。然而,在其他情况下,如果没有彻底的病理分析,转移性播种和生长的细微差异可能会被忽视或误解。本研究通过包括转移性肺肿瘤负荷分析的综合方法,推进了先前发表的尾静脉注射…

Disclosures

The authors have nothing to disclose.

Acknowledgements

代表性数据由美国国家癌症研究所(K22CA218549至S.T.S)资助。除了协助开发本文报道的综合分析方法外,我们还感谢俄亥俄州立大学综合癌症中心比较病理学和小鼠表型共享资源(主任 – Krista La Perle,DVM,PhD)的组织学和免疫组织化学服务以及病理学成像核心的算法开发和分析。

Materials

alcohol prep pads Fisher Scientific 22-363-750 for cleaning tail prior to injection
dissection scissors Fisher Scientific 08-951-5 for mouse dissection and lung tissue inflation
DMEM with L-Glutamine, 4.5g/L Glucose and Sodium Pyruvate Fisher Scientific MT10013CV cell culture media base for MDA-MB-231 and MVT1 cell lines
Dulbecco's Phosphate-Buffered Salt Solution 1x Fisher Scientific MT21030CV used for resuspending tumor cells for injection
ethanol (70 % solution) OSU used to minimize mouse's fur during dissection; use caution – flammable
Evan's blue dye Millipore Sigma E2129 used at 1 % in sterile PBS for practice with tail-vein injection method; use caution – dangerous reagent
Fetal Bovine Serum Millipore Sigma F4135 cell culture media additive; used at 10% in DMEM
forceps Fisher Scientific 10-270 for dissection and lung tissue inflation
FVB/NJ mice The Jackson Laboratory 001800 syngeneic mouse strain for MVT1 cells
hemacytometer (Bright-Line) Millipore Sigma Z359629 for use in cell culture to obtain cell counts
insulin syringe (28 G) Fisher Scientific 14-829-1B for tail-vein injections (BD 329424)
MDA-MB-231 cells ATCC human breast cancer cell line
MVT1 cells mouse mammary tumor cells
needles (26 G) Fisher Scientific 14-826-15 used to inflate the mouse's lungs
neutral buffered formalin (10%) Fisher Scientific 245685 used as a tissue fixative and to inflate lung tissue; use caution – dangerous reagent
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice The Jackson Laboratory 005557 maintained by OSUCCC Target Validation Shared Resource
Penicillin Streptomycin 100x ThermoFisher 15140163 cell culture media additive
sterile gauze Fisher Scientific NC9379092 for applying pressue to mouse's tail if bleeding occurs
syringe (5 mL) Fisher Scientific 14-955-458 used to inflate mouse lung tissue
tail-vein restrainer Braintree Scientific, Inc. TV-150 STD used to restrain mouse for tail-vein injections
Trypan blue (0.4 %) ThermoFisher 15250061 used in cell culture to assess viability
Trypsin-EDTA 0.25 % ThermoFisher 25200-114 used in cell culture to detach tumor cells from plate

References

  1. Chambers, A. F., Groom, A. C., MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Reviews: Cancer. 2 (8), 563-572 (2002).
  2. Steeg, P. S. Targeting metastasis. Nature Reviews: Cancer. 16 (4), 201-218 (2016).
  3. Gupta, G. P., Massague, J. Cancer metastasis: building a framework. Cell. 127 (4), 679-695 (2006).
  4. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature Medicine. 12 (8), 895-904 (2006).
  5. Chaffer, C. L., Weinberg, R. A. A perspective on cancer cell metastasis. Science. 331 (6024), 1559-1564 (2011).
  6. Eckhardt, B. L., Francis, P. A., Parker, B. S., Anderson, R. L. Strategies for the discovery and development of therapies for metastatic breast cancer. Nature Reviews Drug Discovery. 11 (6), 479-497 (2012).
  7. Gomez-Cuadrado, L., Tracey, N., Ma, R., Qian, B., Brunton, V. G. Mouse models of metastasis: progress and prospects. Disease Models & Mechanisms. 10 (9), 1061-1074 (2017).
  8. Fantozzi, A., Christofori, G. Mouse models of breast cancer metastasis. Breast Cancer Research. 8 (4), 212 (2006).
  9. Schoenenberger, C. A., et al. Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO Journal. 7 (1), 169-175 (1988).
  10. Nusse, R., Varmus, H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 31 (1), 99-109 (1982).
  11. Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R., Leder, P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 54 (1), 105-115 (1988).
  12. Lin, E. Y., et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology. 163 (5), 2113-2126 (2003).
  13. Green, J. E., et al. The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene. 19 (1), 1020-1027 (2000).
  14. Iorns, E., et al. A new mouse model for the study of human breast cancer metastasis. PloS One. 7 (10), 47995 (2012).
  15. Kim, I. S., Baek, S. H. Mouse models for breast cancer metastasis. Biochemical and Biophysical Research Communications. 394 (3), 443-447 (2010).
  16. Mariotto, A. B., Etzioni, R., Hurlbert, M., Penberthy, L., Mayer, M. Estimation of the Number of Women Living with Metastatic Breast Cancer in the United States. Cancer Epidemiology, Biomarkers and Prevention. 26 (6), 809-815 (2017).
  17. Xiao, W., et al. Risk factors and survival outcomes in patients with breast cancer and lung metastasis: a population-based study. Cancer Medicine. 7 (3), 922-930 (2018).
  18. Smid, M., et al. Subtypes of breast cancer show preferential site of relapse. 암 연구학. 68 (9), 3108-3114 (2008).
  19. Kennecke, H., et al. Metastatic behavior of breast cancer subtypes. Journal of Clinical Oncology. 28 (20), 3271-3277 (2010).
  20. Soni, A., et al. Breast cancer subtypes predispose the site of distant metastases. American Journal of Clinical Pathology. 143 (4), 471-478 (2015).
  21. Leone, B. A., et al. Prognostic impact of metastatic pattern in stage IV breast cancer at initial diagnosis. Breast Cancer Research and Treatment. 161 (3), 537-548 (2017).
  22. Pei, X. F., et al. Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In Vitro Cellular and Developmental Biology: Animal. 40 (1-2), 14-21 (2004).
  23. Mathsyaraja, H., et al. CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth. Oncogene. 34 (28), 3651-3661 (2015).
  24. Yang, S., Zhang, J. J., Huang, X. Y. Mouse models for tumor metastasis. Methods in Molecular Biology. 928, 221-228 (2012).
  25. La Perle, K. M. D. Comparative Pathologists: Ultimate Control Freaks Seeking Validation. Veterinary Pathology. 56 (1), 19-23 (2019).
  26. Blomberg, O. S., Spagnuolo, L., de Visser, K. E. Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Disease Models & Mechanisms. 11 (10), (2018).
  27. Gonzalez, H., Hagerling, C., Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes and Development. 32 (19-20), 1267-1284 (2018).
  28. Borowsky, A. D., et al. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clinical and Experimental Metastasis. 22 (1), 47-59 (2005).
  29. Yang, Y., et al. Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget. 8 (19), 30621-30643 (2017).
  30. Resch, M., Neels, T., Tichy, A., Palme, R., Rulicke, T. Impact assessment of tail-vein injection in mice using a modified anaesthesia induction chamber versus a common restrainer without anaesthesia. Laboratory Animals. 53 (2), 190-201 (2019).
  31. Rashid, O. M., et al. Is tail vein injection a relevant breast cancer lung metastasis model. Journal of Thoracic Disease. 5 (4), 385-392 (2013).
  32. Goodale, D., Phay, C., Postenka, C. O., Keeney, M., Allan, A. L. Characterization of tumor cell dissemination patterns in preclinical models of cancer metastasis using flow cytometry and laser scanning cytometry. Cytometry Part A. 75 (4), 344-355 (2009).
  33. Goddard, E. T., Fischer, J., Schedin, P. A Portal Vein Injection Model to Study Liver Metastasis of Breast Cancer. Journal of Visualized Experiments. (118), (2016).
  34. Wright, L. E., et al. Murine models of breast cancer bone metastasis. BoneKEy Reports. 5, 804 (2016).
  35. Simmons, J. K., et al. Animal Models of Bone Metastasis. Veterinary Pathology. 52 (5), 827-841 (2015).
  36. Liu, Z., et al. Improving orthotopic mouse models of patient-derived breast cancer brain metastases by a modified intracarotid injection method. Scientific Reports. 9 (1), 622 (2019).
  37. Kodack, D. P., Askoxylakis, V., Ferraro, G. B., Fukumura, D., Jain, R. K. Emerging strategies for treating brain metastases from breast cancer. Cancer Cell. 27 (2), 163-175 (2015).
  38. Brown, D. L. Practical Stereology Applications for the Pathologist. Veterinary Pathology. 54 (3), 358-368 (2017).
  39. Aeffner, F., et al. Digital Microscopy, Image Analysis, and Virtual Slide Repository. Institute for Laboratory Animal Research Journal. 59 (1), 66-79 (2018).
check_url/kr/61270?article_type=t

Play Video

Cite This Article
Thies, K. A., Steck, S., Knoblaugh, S. E., Sizemore, S. T. Pathological Analysis of Lung Metastasis Following Lateral Tail-Vein Injection of Tumor Cells. J. Vis. Exp. (159), e61270, doi:10.3791/61270 (2020).

View Video