Summary

Koppeling van koolstofafvang uit een energiecentrale met semi-geautomatiseerde open racewayvijvers voor de teelt van microalgen

Published: August 14, 2020
doi:

Summary

Er wordt een protocol beschreven om de koolstofdioxide in het rookgas van aardgascentrales te gebruiken om microalgen te cultiveren in open raceway-vijvers. Rookgasinjectie wordt geregeld met een pH-sensor en de groei van microalgen wordt gemonitord met realtime metingen van de optische dichtheid.

Abstract

In de Verenigde Staten is 35% van de totale uitstoot van koolstofdioxide (CO2) afkomstig van de elektriciteitsindustrie, waarvan 30% de opwekking van aardgaselektriciteit vertegenwoordigt. Microalgen kunnen CO2 10 tot 15 keer sneller biofixeren dan planten en algenbiomassa omzetten in interessante producten, zoals biobrandstoffen. Deze studie presenteert dus een protocol dat de potentiële synergieën van microalgenteelt aantoont met een aardgascentrale in het zuidwesten van de Verenigde Staten in een heet semi-aride klimaat. State-of-the-art technologieën worden gebruikt om de koolstofafvang en het gebruik via de groene algensoort Chlorella sorokiniana te verbeteren, die verder kan worden verwerkt tot biobrandstof. We beschrijven een protocol met betrekking tot een semi-geautomatiseerde open raceway-vijver en bespreken de resultaten van de prestaties toen het werd getest in de Tucson Electric Power-fabriek in Tucson, Arizona. Rookgas werd gebruikt als de belangrijkste koolstofbron om de pH te regelen en Chlorella sorokiniana werd gekweekt. Een geoptimaliseerd medium werd gebruikt om de algen te laten groeien. De hoeveelheid CO2 die in functie van de tijd aan het systeem werd toegevoegd, werd nauwlettend in de gaten gehouden. Daarnaast werden andere fysisch-chemische factoren die van invloed zijn op de algengroeisnelheid, biomassaproductiviteit en koolstoffixatie gecontroleerd, waaronder optische dichtheid, opgeloste zuurstof (DO), elektrogeleiding (EC) en lucht- en vijvertemperaturen. De resultaten geven aan dat een microalgenopbrengst tot 0,385 g/L asvrij drooggewicht haalbaar is, met een lipidengehalte van 24%. Het benutten van synergetische kansen tussen CO 2-uitstoters en algenboeren kan de middelen leveren die nodig zijn om de koolstofafvang te vergroten en tegelijkertijd de duurzame productie van algenbiobrandstoffen en bioproducten te ondersteunen.

Introduction

De opwarming van de aarde is een van de belangrijkste milieuproblemen waarmee de wereld vandaag wordt geconfronteerd1. Studies suggereren dat de belangrijkste oorzaak de toename van de uitstoot van broeikasgassen (BKG), voornamelijk CO2, in de atmosfeer is als gevolg van menselijke activiteiten 2,3,4,5,6,7. In de VS is de grootste dichtheid van CO2-uitstoot voornamelijk afkomstig van de verbranding van fossiele brandstoffen in de energiesector, met name elektriciteitscentrales 3,7,8,9. Zo zijn technologieën voor koolstofafvang en -gebruik (CCU) naar voren gekomen als een van de belangrijkste strategieën om de uitstoot van broeikasgassen te verminderen 2,7,10. Deze omvatten biologische systemen die zonlicht gebruiken om CO2 en water via fotosynthese, in aanwezigheid van voedingsstoffen, om te zetten in biomassa. Het gebruik van microalgen is voorgesteld vanwege de snelle groeisnelheid, het hoge CO 2-fixatievermogen en de hoge productiecapaciteit. Bovendien hebben microalgen een breed bio-energiepotentieel omdat de biomassa kan worden omgezet in interessante producten, zoals biobrandstoffen die fossiele brandstoffen kunnen vervangen 7,9,10,11,12.

Microalgen kunnen groeien en biologische omzetting bereiken in een verscheidenheid aan teeltsystemen of reactoren, waaronder open raceway vijvers en gesloten fotobioreactoren 13,14,15,16,17,18,19. Onderzoekers hebben de voordelen en beperkingen bestudeerd die het succes van het bioproces in beide teeltsystemen bepalen, onder binnen- of buitenomstandigheden 5,6,16,20,21,22,23,24,25 . Open raceway vijvers zijn de meest voorkomende teeltsystemen voor koolstofafvang en -gebruik in situaties waar rookgas rechtstreeks vanuit de schoorsteen kan worden gedistribueerd. Dit type teeltsysteem is relatief goedkoop, is eenvoudig op te schalen, heeft lage energiekosten en heeft een lage energiebehoefte voor het mengen. Bovendien kunnen deze systemen eenvoudig naast de energiecentrale worden geplaatst om het CCU-proces efficiënter te maken. Er zijn echter enkele nadelen waarmee rekening moet worden gehouden, zoals de beperking van de overdracht van CO2-gas / vloeistofmassa. Hoewel er beperkingen zijn, zijn open raceway-vijvers voorgesteld als het meest geschikte systeem voor de productie van microalgenbiobrandstof in de buitenlucht 5,9,11,16,20.

In dit artikel beschrijven we een methode voor de teelt van microalgen in open raceway-vijvers die koolstofafvang uit het rookgas van een aardgascentrale combineert. De methode bestaat uit een semi-geautomatiseerd systeem dat de rookgasinjectie regelt op basis van de pH van de cultuur; het systeem bewaakt en registreert de Chlorella sorokiniana-cultuurstatus in realtime met behulp van optische dichtheid, opgeloste zuurstof (DO), elektrogeleiding (EC) en lucht- en vijvertemperatuursensoren. Algenbiomassa en rookgasinjectiegegevens worden elke 10 minuten verzameld door een datalogger in de Tucson Electric Power-faciliteit. Algenstamonderhoud, opschaling, kwaliteitscontrolemetingen en biomassakarakterisering (bijv. Correlatie tussen optische dichtheid, g / L en lipidegehalte) worden uitgevoerd in een laboratoriumomgeving aan de Universiteit van Arizona. Een eerder protocol schetste een methode voor het optimaliseren van rookgasinstellingen om de groei van microalgen in fotobioreactoren te bevorderen via computersimulatie26. Het hier gepresenteerde protocol is uniek omdat het gebruik maakt van open raceway-vijvers en is ontworpen om ter plaatse te worden geïmplementeerd in een aardgascentrale om direct gebruik te maken van het geproduceerde rookgas. Daarnaast maken real-time optische dichtheidsmetingen deel uit van het protocol. Het systeem zoals beschreven is geoptimaliseerd voor een heet semi-aride klimaat (Köppen BSh), dat lage neerslag, aanzienlijke variabiliteit in neerslag van jaar tot jaar, lage relatieve vochtigheid, hoge verdampingssnelheden, heldere luchten en intense zonnestraling vertoont27.

Protocol

1. Groeisysteem: outdoor open raceway vijver instellingen Richt de open raceway-vijvers dicht bij de rookgasbron in (met 8-10% CO2). Zorg ervoor dat water en elektriciteit beschikbaar zijn op de locatie van de vijverreactor en dat de reactor het grootste deel van de dag niet in de schaduw staat (figuur 1). Vang rookgas af tijdens het naverbrandingsproces met behulp van een brandstofslang van 0,95 cm, enkele meters voordat het rookgas de schoorsteen binnenkomt o…

Representative Results

Eerdere experimentele resultaten van ons laboratorium geven aan dat microalgenteelt met behulp van een semi-geautomatiseerde open raceway-vijver kan worden gekoppeld aan koolstofafvangprocessen. Om de synergie tussen deze twee processen beter te begrijpen (figuur 2), hebben we een protocol ontwikkeld en op maat gemaakt voor het kweken van de groene algensoort Chlorella sorokiniana onder buitenomstandigheden in een warm semi-aride klimaat. Aardgas rookgas werd verkregen uit een indus…

Discussion

In deze studie tonen we aan dat het synergetisch koppelen van rookgaskoolstofafvang en microalgenteelt mogelijk is in een heet semi-aride klimaat. Het experimentele protocol voor het semi-geautomatiseerde raceway-vijversysteem integreert state-of-the-art technologie om relevante parameters in realtime te bewaken die correleren met algengroei bij het gebruik van rookgas als koolstofbron. Het voorgestelde protocol is bedoeld om de onzekerheid in de algenteelt te verminderen, wat een van de belangrijkste nadelen is van race…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dit werk werd ondersteund door het Regional Algal Feedstock Testbed-project, U.S. Department of Energy DE-EE0006269. We bedanken ook Esteban Jimenez, Jessica Peebles, Francisco Acedo, Jose Cisneros, RAFT Team, Mark Mansfield, UA-personeel van energiecentrales en personeel van TEP-energiecentrales voor al hun hulp.

Materials

Adjustable speed motor (paddle wheel system) Leeson 174307 Lesson 174307.00, type: SCR Voltage; Amps:10
Aluminum weight boats Fisher Scientific 08-732-102 Fisherbrand Aluminum Weighing Dishes
Ammonium Iron (III) (NH₄)₅[Fe(C₆H₄O₇)₂] Fisher Scientific 1185 – 57 – 5 Medium preparation. Ammonium iron(III) citrate
Ammonium Phosphate Sigma-Aldrich 7722-76-1 This chemical is used for the optimized medium
Ampicillin sodium salt Sigma Aldrich A9518-5G This chemical is used for avoiding algae contamination
Autoclave Amerex Instrument Inc Hirayama HA300MII
Bacto agar Fisher Scientific BP1423500 Fisher BioReagents Granulated Agar
Bleach Clorox Germicidal Bleach, concentrated clorox
Boric Acid (H3BO3) Fisher Scientific 10043-35-3 Trace Elelements: Boric acid
Calcium chloride dihydrate (CaCl2*2H2O) Sigma-Aldrich 10035-04-8 Medium preparation. Calcium chloride dihydrate
Carboys (20 L) Nalgene – Thermo Fisher Scientific 2250-0050PK Polypropylene Carboy w/Handles
Centrifuge Beckman Coulter, Inc J2-21
Chloroform Sigma-Aldrich 67-66-3 This chemical is used for lipid extraction
Citraplex 20% Iron Loveland Products SDS No. 1000595582 -17-LPI https://www.fbn.com/direct/product/Citraplex-20-Iron#product_info
Cobalt (II) nitrate hexahydrate (Co(NO3)2*6H2O) Sigma-Aldrich 10026-22-9 Trace Elements: Cobalt (II) nitrate hexahydrate
Compressor Makita MAC700 This equipment is used for the injection CO2 system
Control Valve Sierra Instruments SmartTrak 100 This item needs to be customized for your application. In our case, it was used a 5% CO2 and 95% air mixture.
Copper (II) Sulfate Pentahydrate (CuSO4*5H2O) Sigma-Aldrich 7758-99-8 Trace Elements: Copper (II) Sulfate Pentahydrate
Data Logger: Campbell unit CR3000 Scientific Campbell CR3000 This equipment is used for controlling all the system, motoring and recording data
Dissolvde Oxygen Solution Campbell Scientific 14055 Dissolved oxygen electrolyte solution DO6002 – Lot No. 211085
Dissolved Oxygen probe Sensorex  DO6400/T Dissolved Oxygen Sensor with Digital Communication
Electroconductivity calibration solution Ricca Chemical Company 2245 – 32 ( R2245000-1A ) Conductivity Standard, 5000 uS/cm at 25C (2620 ppm TDS as NaCl)
Electroconductivity probe sensor Hanna Instruments HI3003/D Flow-thru Conductivity Probe – NTC Sensor, DIN Connector, 3m Cable
Ethylenediaminetetraacetic acid disodium salt dihydrate (Na2EDTA*2H2O) Sigma-Aldrich 6381-92-6 Medium Preparation: Ethylenediaminetetraacetic acid disodium salt dihydrate
Filters Fisher Scientific 09-874-48 Whatman Binder-Free Glass Microfiber Filters
Flasks Fisher scientific 09-552-40 Pyrex Fernbach Flasks
Furnace Hogentogler Model: F6020C-80 Thermo Sicentific Thermolyne F6020C – 80 Muffle Furnace
Glass dessicator VWR International LLC 75871-430 Type 150, 140 mm of diameter
Glass funnel Fisher Scientific FB6005865 Fisherbrand Reusable Glass Long-Stem Funnels
Laminar flow hood Fisher Hamilton Safeair Fisher Hamilton Stainless Safeair hume hood
Magnesium sulfate heptahydrate (MgSO4*7H2O) Fisher Scientific 10034 – 99 – 8 Medium Preparation: Magnesium sulfate heptahydrate
Methanol Sigma-Aldrich 67-56-1 Lipid extraction solvent
Micro bubble Diffuser Pentair Aquatic Eco-Systems 1PMBD075 This equipment is used for the injection CO2 system
Microalgae: Chlorella Sorokiniana NAABB DOE 1412
Microoscope Carl Zeiss 4291097
Microwave assistant extraction MARS, CEM Corportation CEM Mars 5 Xtraction 230/60 Microwave Accelerated Reaction System. Model: 907601
MnCl2*4H2O Sigma-Aldrich 13446-34-9 Manganese(II) chloride tetrahydrate
Mortars Fisher Scientific FB961B Fisherbrand porcelein mortars
Nitrogen evaporator Organomation N-EVAP 112 Nitrogen Evaporatpr (OA-SYS Heating System)
Oven VWR International LLC 89511-410 Forced Air Oven
Paddle Wheel 8-blade horizontal axis propeller. This usually comes as part of the paddlewheel reactor.
Paddle wheel motor Leeson M1135042.00 Leeson, Model: CM34025Nz10C; 1/4 HP; Volts 90; FR 34; 62 RPM.
Pestles Fisher Scientific FB961M Fisherbrand porcelein pestles
pH and EC Transmitter Hanna Instruments HI98143 Hanna Instruments HI98143-04 pH and EC Transmitter with Galvanic isolated 0-4V.
pH calibration solutions Fisher Scientific 13-643-003 Thermo Scientific Orion pH Buffer Bottles
pH probe sensor Hanna Instruments HI1006-2005 Hanna Instruments HI1006-2005 Teflon pH Electrode with matching pin 5m.
Pippete tips Fisher Scientific 1111-2821 1000 ul TipOne graduated blue tip in racks
Pippetter Fisher Scientific 13-690-032 Eppendorf Reserch plus Variable Adjustable Volume Pipettes: Single-channel
Plastic cuvettes Fisher scientific 14377017 BrandTech BRAND Plastic Cuvettes
Plates Fisher scientific 08-757-100D Corning Falcon Bacteriological Petri Dishes with Lid
Potash This chemical is used for the optimazed medium preparation. It was bought in a fertilizer local company
Potassium phosphate dibasic (K2HPO4) Sigma-Aldrich 7758 -11 – 4 Medium Preparation: Potassium phosphate dibasic
Pyrex reusable Media Storage Bottles Fisher scientific 06-414-2A 1 L and 2 L bottels – PYREX GL45 Screw Caps with Plug Seals
Raceway Pond Similar equipment can be bought at https://microbioengineering.com/products
Real Time Optical Density Sensor University of Arizona This equipment was design and build by a member of the group
RS232 Cable Sabrent Sabrent USB 2.0 to Serial (9-Pin) DB-9 RS-232 Converter Cable, Prolific Chipset, Hexnuts, [Windows 10/8.1/8/7/VISTA/XP, Mac OS X 10.6 and Above] 2.5 Feet (CB-DB9P)
Shaker Table Algae agitation 150 rpm
Sodium Carbonate (Na2CO3) Sigma-Aldrich 497-19-8 Sodium carbonate
Sodium molybdate dihydrate (Na2MoO4*2H2O) Sigma-Aldrich 10102-40-6 Medium Preparation: Sodium molybdate dihydrate
Sodium nitrate (NaNO3) Sigma-Aldrich 7631-99-4 Medium Preparation: Sodium nitrate
Spectophotometer Fisher Scientific Company 14-385-400 Thermo Fisher Scientific – 10S UV-Vis GENESTYS Spectrophotometer cylindrical Longpath cell holder; internal reference dectector, Xenon flash lamp; dual silicon photodiode; 240V, 50 to 60Hz selected automatically.
Test tubes Fisher Scientific 14-961-27 Fisherbrand Disposable Borosilicate Glass Tubes with Plain End (10 ml)
Thermocouples type K Omega KMQXL-125G-6
Urea Sigma-Aldrich 2067-80-3 Urea
Vacuum filtration system Fisher Scientific XX1514700 MilliporeSigma Glass Vacuum Filter Holder, 47 mm. The system includes: Ground glass flask attachment, coarse-frit glass filter support, and flask
Vacuum pump Grainger Marathon Electric AC Motor Thermally protected G588DX – MOD 5KH36KNA510X. HP 1/4. RPM 1725/1425
Zinc sulfate heptahydrate (ZnSO4*7H2O) Sigma-Aldrich 7446-20-0 Zinc sulfate heptahydrate

References

  1. . The Intergovernmental Panel on Climate Change Available from: https://www.ipcc.ch/ (2018)
  2. Songolzadeh, M., Soleimani, M., Ravanchi, M., Songolzadeh, R. Carbon Dioxide Separation from Flue Gases: A Technological, Review Emphasizing Reduction in Greenhouse Gas Emissions. The Scientific World Journal. 2014, 1-34 (2014).
  3. Litynski, J., Klara, S., McIlvried, H., Srivastava, R. The United States Department of Energy’s Regional Carbon Sequestration Partnerships program: A collaborative approach to carbon management. Environ International. 32 (1), 128-144 (2006).
  4. Cuellar-Bermudez, S., Garcia-Perez, J., Rittmann, B., Parra-Saldivar, R. Photosynthetic Bioenergy Utilizing CO2: an Approach on Flue Gases Utilization for Third Generation Biofuels. Journal of Clean Production. 98, 53-65 (2014).
  5. Cheah, W., Show, P., Chang, J., Ling, T., Juan, J. Biosequestration of Atmospheric CO2 and Flue Gas-Containing CO2 by Microalgae. Bioresource Technology. 184, 190-201 (2014).
  6. Kao, C., et al. Utilization of Carbon Dioxide in Industrial Flue Gases for the Cultivation of Microalga Chlorella sp. Bioresource Technology. 166, 485-493 (2014).
  7. White, C., Strazisar, B., Granite, E., Hoffman, S., Pennline, H. Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations. Journal of the Air and Waste Management Association. 53 (10), 1172-1182 (2003).
  8. Benemann, J. CO2 Mitigation with Microalgae Systems. Pergamon Energy Conversion Management Journal. 38, 475-479 (1997).
  9. U.S.Department of Energy. The Capture , Utilization and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants. Energy. 2, (1993).
  10. Granite, E., O’Brien, T. Review of Novel Methods for Carbon Dioxide Separation from Flue and Fuel Gases. Fuel Processesing Technology. 86 (14-15), 1423-1434 (2005).
  11. Benemann, J. Utilization of Carbon Dioxide from Fossil Fuel-Burning Power Plants with Biological Systems. Energy Conversion and Management. 34 (9-11), 999-1004 (1993).
  12. Joshi, C., Nookaraju, A. New Avenues of Bioenergy Production from Plants: Green Alternatives to Petroleum. Journal of Petroleum & Environmental Biotechnology. 03 (07), 3 (2012).
  13. Chisti, Y. Constraints to commercialization of algal fuels. Journal of Biotechnology. 22, 166-186 (2013).
  14. Han, S., Jin, W., Tu, R., Wu, W. Biofuel production from microalgae as feedstock: current status and potential. Critical Reviews in Biotechnology. 35 (2), 255-268 (2015).
  15. Lam, M., Lee, K. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy. 94, 303-308 (2012).
  16. de Godos, I., et al. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology. 153, 307-314 (2014).
  17. Posten, C., Schaub, G. Microalgae and terrestrial biomass as source for fuels a process view. Journal of Biotechnology. 142 (1), 64-69 (2009).
  18. Demirbas, M. Biofuels from algae for sustainable development. Applied Energy. 88 (10), 3473-3480 (2011).
  19. Shelef, G., Sukenik, A., Green, M. . Microalgae Harvesting and Processing A Literature Review. , (1984).
  20. Pawlowski, A., Mendoza, J., Guzmán, J., Berenguel, J., Acién, F., Dormido, S. Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresource Technology. 170, 1-9 (2014).
  21. Zhu, B., Sun, F., Yang, M., Lu, L., Yang, G., Pan, K. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresource Technology. 174, 53-59 (2014).
  22. Kaštánek, F., et al. In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide. Waste Management & Research. 28 (11), 961-966 (2010).
  23. Yadav, G., Karemore, A., Dash, S., Sen, R. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresource Technology. 191, 399-406 (2015).
  24. Zhao, B., Su, Y., Zhang, Y., Cui, G. Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy. 89, 347-357 (2015).
  25. He, L., Chen, A., Yu, Y., Kucera, L., Tang, Y. Optimize Flue Gas Settings to Promote Microalgae Growth in Photobioreactors via Computer Simulations. Journal of Visualized Experiments. (80), e50718 (2013).
  26. He, L., Subramanian, V., Tang, Y. Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas. Biomass and Bioenergy. 41, 131-138 (2012).
  27. Pidwirny, M. . Fundamentals of Physical Geography, 2nd ed. , (2006).
  28. Van Den Hende, S., Vervaeren, H., Boon, N. Flue gas compounds and microalgae: (Bio-) chemical interactions leading to biotechnological opportunities. Biotechnology Advances. 30 (2012), 1405-1424 (2012).
  29. Jia, F., Kacira, M., Ogden, K. Multi-wavelength based optical density sensor for autonomous monitoring of microalgae. Sensors (Switzerland). 15 (9), 22234-22248 (2015).
  30. Unkefer, C., et al. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research. 22, 187-215 (2017).
  31. Neofotis, P., et al. Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Research. 15, 164-178 (2016).
  32. Huesemann, M., Van Wagenen, J., Miller, T., Chavis, A., Hobbs, S., Crowe, B. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds. Biotechnology Bioengineering. 110 (6), 1583-1594 (2013).
  33. Huesemann, M., et al. Estimating the Maximum Achievable Productivity in Outdoor Ponds: Microalgae Biomass Growth Modeling and Climate Simulated Culturing. Microalgal Production for Biomass and High-Value Products. 28 (2016), 113-137 (2016).
  34. Ramezan, M., Skone, T., Nsakala, N., Lilijedahl, G. . Carbon Dioxide Capture from Existing Coal-Fired Power Plants. , 268 (2007).
  35. Huesemann, M., et al. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Research. 13, 195-206 (2016).
  36. Mendoza, J., et al. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass and Bioenergy. 54, 267-275 (2013).
  37. Algae Cultivation for Carbon Capture and Utilization Workshop. . Algae Cultivation for Carbon Capture and Utilization Workshop. , (2017).
  38. Park, J., Craggs, R., Shilton, A. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology. 102 (1), 35-42 (2011).
  39. Mata, T., Martins, A., Caetano, N. Microalgae for biodiesel production and other applications: A review. Renewewable and Sustainable Energy Reviews. 14 (1), 217-232 (2010).
  40. Qiu, R., Gao, S., Lopez, P., Ogden, K. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research. 28, 192-199 (2017).
  41. Molina Grima, E., Fernández, F., Garcıa Camacho, F., Chisti, Y. Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology. 70 (1-3), 231-247 (1999).
  42. Padmanabhan, Y. P. Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors. 3 Biotech. 7 (2), 1-7 (2017).
  43. Vonshak, A., Torzillo, G. Environmental Stress Physiology. Handbook of Microalgal Culture. 4 (2007), 57-82 (2007).
  44. Morales, M., Sánchez, L., Revah, S. The impact of environmental factors on carbon dioxide fixation by microalgae. Federation of European Microbiological Society Microbiology Letters. 365 (3), 1-11 (2018).
  45. Cuaresma, M., Janssen, M., Vílchez, C., Wijffels, R. Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresource Technology. 102 (8), 5129-5137 (2011).
  46. Richmond, A., Zou, N. Efficient utilisation of high photon irradiance for mass production of photoautotrophic micro-organisms. Journal of Applied Phycology. 11 (1), 123-127 (1999).
  47. Kurpan, D., Silva, A., Araújo, O., Chaloub, R. Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass and Bioenergy. 72, 280-287 (2015).
  48. Maedal, K., Owadai, M., Kimura, N., Karubd, I. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae To screen microalgac which arc suitable for direct CO2 fixation , microalgae were sampled from. Energy Conversion Managment. 36 (6-9), 717-720 (1995).
  49. Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M., Karube, I. Strain from Hot Springs Tolerant to High Temperature and high CO2. Energy Conversion Managment. 36 (6-9), 693-696 (1995).
  50. Lam, M., Lee, K., Mohamed, A. Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control. 10, 456-469 (2012).
  51. Raeesossadati, M., Ahmadzadeh, H., McHenry, M., Moheimani, N. CO2 Bioremediation by Microalgae in Photobioreactors: Impacts of Biomass and CO2 Concentrations, Light, and Temperature. Algal Research. 6, 78-85 (2014).
  52. Mendoza, J., et al. Oxygen transfer and evolution in microalgal culture in open raceways. Bioresource Technology. 137, 188-195 (2013).
  53. Carvalho, A., Malcata, F., Meireles, A. Microalgal Reactors A Review of Enclosed System Designs and Performances. Biotechnology Progress. 22 (6), 1490-1506 (2006).
  54. Pires, J., Alvim-Ferraz, M., Martins, F., Simões, M. Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews. 16 (5), 3043-3053 (2012).
  55. Lam, M., Lee, K. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances. 30 (3), 673-690 (2012).
  56. Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology. 26 (3), 126-131 (2008).
  57. K̈oppen, W., Volken, E., Brönnimann, S. The Thermal Zones of the Earth According to the duration of Hot, Moderate and Cold Periods and to the Impact of Heat on the Organic. Meteorologische Zeitschrift. 20 (3), 351-360 (2011).
  58. Lammers, P., et al. Review of the Cultivation Program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research. 22, 166-186 (2017).
check_url/kr/61498?article_type=t

Play Video

Cite This Article
Acedo, M., Gonzalez Cena, J. R., Kiehlbaugh, K. M., Ogden, K. L. Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation. J. Vis. Exp. (162), e61498, doi:10.3791/61498 (2020).

View Video