Summary

Tensão controlada de hidrogéis 3D sob imagem de microscopia ao vivo

Published: December 04, 2020
doi:

Summary

O método apresentado envolve alongamento uniaxial de hidrogéis macios 3D embutidos na borracha de silicone, permitindo microscopia confocal ao vivo. Demonstra-se a caracterização das cepas de hidrogel externos e internos, bem como o alinhamento de fibras. O dispositivo e o protocolo desenvolvidos podem avaliar a resposta das células a vários regimes de tensão.

Abstract

As forças externas são um fator importante na formação, desenvolvimento e manutenção de tecidos. Os efeitos dessas forças são frequentemente estudados usando métodos especializados de alongamento in vitro. Vários sistemas disponíveis usam macas à base de substrato 2D, enquanto a acessibilidade de técnicas 3D para coar hidrogéis macios, é mais restrita. Aqui, descrevemos um método que permite alongamento externo de hidrogéis macios a partir de sua circunferência, usando uma tira de silicone elástica como portador da amostra. O sistema de alongamento utilizado neste protocolo é construído a partir de peças impressas em 3D e eletrônicos de baixo custo, tornando-o simples e fácil de replicar em outros laboratórios. O processo experimental começa com hidrogéis de fibrina macia polimerizador (>100 μm) (Elastic Modulus de ~100 Pa) em um recorte no centro de uma tira de silicone. As construções de gel de silicone são então anexadas ao dispositivo de alongamento impresso e colocadas no estágio do microscópio confocal. Sob microscopia ao vivo, o dispositivo de alongamento é ativado, e os géis são imageados em várias magnitudes de estiramento. O processamento de imagem é então usado para quantificar as deformações de gel resultantes, demonstrando cepas relativamente homogêneas e alinhamento de fibras ao longo da espessura 3D do gel (eixoZ). As vantagens deste método incluem a capacidade de coar hidrogéis extremamente macios em 3D durante a execução da microscopia in situ, e a liberdade de manipular a geometria e o tamanho da amostra de acordo com as necessidades do usuário. Além disso, com a devida adaptação, este método pode ser usado para esticar outros tipos de hidrogéis (por exemplo, colágeno, poliacrilamida ou polietileno glicol) e pode permitir a análise de células e resposta tecidual a forças externas em condições 3D mais biomiméticas.

Introduction

A resposta tecidual às forças mecânicas é parte integrante de uma ampla gama de funções biológicas, incluindo expressão genética1,diferenciação celular2e remodelação tecidual3. Além disso, alterações induzidas por força na matriz extracelular (ECM), como alinhamento de fibras e adensamento, podem impactar o comportamento celular e a formação tecidual4,5,6. A estrutura de malha fibrosa do ECM possui propriedades mecânicas intrigantes, como elasticidade não linear, deformação não afine e deformações plásticas7,8,9,10,11,12. Essas propriedades impactam como as células e seu microambiente circundante respondem às forças mecânicas externas13,14. Entender como o ECM e os tecidos respondem às forças mecânicas permitirá o progresso no campo da engenharia de tecidos e no desenvolvimento de modelos computacionais e teóricos mais precisos.

Os métodos mais comuns para esticar amostras mecanicamente se concentraram em substratos 2D carregados de células para explorar os efeitos no comportamento celular. Estes incluem, por exemplo, a aplicação de cepa a substratos de polidimetilatilaxano (PDMS) e análise de ângulos de reorientação celular em relação à direção de estiramento15,16,17,18,19. No entanto, os métodos que investigam a resposta de hidrogéis embutidos em células 3D ao trecho externo, uma situação que imita mais de perto o microambiente tecidual, são mais limitados. Os avanços em direção aos métodos de alongamento 3D são de particular importância porque as células se comportam de forma diferente em substratos 2D quando comparadas às matrizes 3D20. Esses comportamentos incluem realinhamento celular, níveis de expressão proteica e padrões de migração21,22,23.

Os métodos e dispositivos que permitem o alongamento da amostra 3D incluem ambos comercialmente disponíveis24,25,26,27,28 e aqueles desenvolvidos para pesquisa laboratorial29. Estes métodos utilizam tubos de silicone distensíveis30,câmaras multi-poço31,grampos26,32, bioreatores11,33, cantilevers34,35,36, e ímãs37,38. Algumas técnicas geram trecho que deforma localmente hidrogéis 3D, por exemplo, puxando agulhas de dois pontos únicos no gel5,enquanto outras permitem a deformação de toda a maior parte do gel16. Além disso, a maioria desses sistemas se concentra na análise do campo de tensão no plano X-Y, com informações limitadas sobre o campo de tensão na direção Z. Além disso, apenas um punhado desses dispositivos são capazes de imagens microscópicas in situ. O principal desafio com imagens de alta ampliação in situ (por exemplo, microscópio confocal) é a distância de trabalho limitada de algumas centenas de mícrons da lente objetiva para a amostra. Dispositivos que permitem imagens vivas durante o sacrifício de estiramento a uniformidade da tensão no eixo Zou são relativamente complexos e difíceis de reproduzir em outros laboratórios39,40.

Esta abordagem para esticar hidrogéis 3D permite a tensão uniaxial estática ou cíclica durante a microscopia confocal ao vivo. O dispositivo de alongamento (conhecido como ‘Smart Cyclic Uniaxial Stretcher – SCyUS’) é construído usando peças impressas em 3D e hardware de baixo custo, permitindo fácil reprodução em outros laboratórios. Anexado ao dispositivo está uma borracha de silicone comercialmente disponível com um recorte geométrico em seu centro. Os componentes do hidrogel são polimerizados para preencher o recorte. Durante a polimerização, hidrogéis biológicos, como fibrina ou colágeno, naturalmente aderem às paredes internas do recorte. Usando o SCyUS, a tira de silicone é esticada não axisiomente, transferindo cepas controladas para o hidrogel 3D incorporado41.

Este sistema permite uma combinação única de recursos e vantagens em comparação com outros métodos existentes. Primeiro, o sistema permite alongamento uniaxial de hidrogéis macios 3D espessos (> 100 μm de espessura, <1 kPa rigidez) de sua periferia, com deformação Z-homogênea em todo o hidrogel. Estes hidrogéis são muito macios para serem agarrados e esticados por técnicas convencionais de tração. Em segundo lugar, o dispositivo de alongamento pode ser facilmente replicado em outros laboratórios, uma vez que a impressão 3D está prontamente disponível para os pesquisadores e os eletrônicos usados no design são de baixo custo. Em terceiro lugar, e talvez a característica mais atraente, a geometria e o tamanho do recorte na tira de silicone podem ser facilmente manipulados, permitindo gradientes de tensão e condições de limite, bem como o uso de uma variedade de volumes de amostra, até alguns microliters.

O protocolo apresentado consiste em moldar gel de fibrina em discos de ~2 mm de diâmetro em tiras de borracha de silicone de 0,5 mm de espessura procedidas por estiramento uniaxial sob microscopia confocal ao vivo. O seguinte discute detalhadamente os procedimentos experimentais para medição e análise das cepas que atuam no recorte geométrico, as cepas internas desenvolvidas no hidrogel, bem como o alinhamento de fibras resultante após várias manipulações de estiramento. Por fim, discute-se a possibilidade de incorporar células no hidrogel e expô-las a trechos externos controlados.

Protocol

1. Preparação da solução (a ser realizada com antecedência) Rotulagem fibrinogênioNOTA: A etapa de rotulagem só é necessária se a análise da deformação do gel de fibrina for desejada. Para experimentos celulares, é possível usar um gel sem rótulo. Adicione 38 μL de 10 mg/mL de corante fluorescente de éster succinimidil (dissolvido em DMSO) a 1,5 mL de solução fibrinogênio de 15 mg/mL (razão molar de 5:1) em um tubo centrífuga de 50 mL e coloque em um agitador por 1 hora à temp…

Representative Results

Dados representativos de trecho estático de magnitudes crescentes aplicadas à tira de silicone carregando um hidrogel fibrina 3D, embutido com contas fluorescentes de 1 μm, são mostrados na Figura 9. A análise demonstra o efeito do estiramento do silicone nas alterações geométricas do recorte, bem como as cepas desenvolvidas dentro do gel. Imagensde pilha de Z de todo o gel são usadas para avaliar a deformação do recorte em forma de círculo original para a geome…

Discussion

O método e o protocolo aqui apresentados são em grande parte baseados em nosso estudo anterior por Roitblat Riba et al.41 Incluímos aqui o design completo auxiliado por computador (CAD), Python e códigos microcontroladores do dispositivo SCyUS.

As principais vantagens do método apresentado sobre as abordagens existentes incluem a possibilidade de esticar hidrogéis 3D muito macios (Módulo Elástico de ~100 Pa) de sua circunferência, e sob imagens confoca…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Algumas figuras incluídas aqui foram adaptadas por permissão do Centro de Liberação de Direitos Autorais: Springer Nature, Annals of Biomedical Engineering. Esticando hidrogéis 3D com cepas uniformes de eixo Z ao permitir imagens de microscopia ao vivo, A. Roitblat Riba, S. Natan, A. Kolel, H. Rushkin, O. Tchaicheeyan, A. Lesman, Copyright© (2019).

https://doi.org/10.1007/s10439-019-02426-7

Materials

Alexa Fluor 546 carboxylic acid, succinimidyl ester Invitrogen A20002
Cell Medium (DMEM High Glucose) Biological Industries 01-052-1A Add 10% FBS, 1% PNS, 1% L-Glutamine, 1% Sodium Pyruvate
Cover Slip #1.5 Bar-Naor Ltd. BN72204-30 22×40 mm
DIMETHYL SULPHOXIDE 99.5% GC DMSO Sigma-Aldrich Inc. D-5879-500 ML
Dulbecco's Phosphate-Buffered Saline Biological Industries 02-023-1A
EVICEL Fibrin Sealant (Human) Omrix Biopharmaceuticals 3902 Fibrinogen: 70 mg/mL, Thrombin: 800-1200 IU/mL
Fibrinogen Buffer N/A Recipe for 1L: 7g NaCl, 2.94g trisodium citrate dihydrate, 9g glycine, 20g arginine hydrochloride & 0.15g calcium chloride dihydrate. Bring final volume to 1L with PuW (pH 7.0-7.2)
Fluorescent micro-beads FluoSpheres (1 µm) Invitrogen F8820 Orange (540/560)
Provided as suspension (2% solids) in water plus 2 mM sodium azide
High-Temperature Silicone Rubber McMaster-Carr 3788T41 580 µm-thick
E = 1.5 Mpa
Poisson Ratio = 0.48
Tensile Strength = 4.8 MPa
Upper limit of stretch = +300% engineering strain
HiTrap desalting column 5 mL (Sephadex G-25 packed) GE Healthcare 17-1408-01
HIVAC-G High Vacuum Sealing Compound Shin-Etsu Chemical Co., Ltd. HIVAC-G 100
ImageJ FIJI software39 National Institute of Health, Bethesda, MD Version 1.8.0_112
Microcontroller (Adruino Uno + Adafruit Motorshield v2.3) Arduino/Adafruit Arduino-DK001/Adafruit-1438
MicroVL 21R Centrifuge Thermo Scientific 75002470
Parafilm Bemis PM-996
Primovert Light Microscope Carl Zeiss Suzhou Co., Ltd. 491206-0011-000
SCyUS CAD (Solidworks) Dassault Systèmes N/A
SCyUS Code37 N/A N/A
Servomotor – TowerPro SG-5010 Adafruit 155
SL 16R Centrifuge Thermo Scientific 75004030 For 50 mL tubes
Sterile 10 cm non-culture plates Corning 430167
Thrombin buffer N/A Recipe for 1L: 20g mannitol, 8.77g NaCl, 2.72g sodium acetate trihydrate, 24 mL 25% Human Serum Albumin, 5.88g calcium chloride. Bring final volume to 1L with PuW (pH 7.0)
Trypsin EDTA Solution B (0.25%), EDTA (0.05%) Biological Industries 03-052-1B
USB Cable (Type B Male to Type A Male) N/A N/A
Zeiss LSM 880 Confocal Microscope Carl Zeiss AG 2811000417
ZEN 2.3 SP1 FP3 (black) Carl Zeiss AG Release Version 14.0.0.0

References

  1. Bleuel, J., Zaucke, V., Bruggemann, G. P., Niehoff, A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS ONE. 10, 0119816 (2015).
  2. Pennisi, C. P., Olesen, C. G., de Zee, M., Rasmussen, J., Zachar, V. Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes. Tissue Engineering Part A. 17, 2543-2550 (2011).
  3. Grodzinsky, A. J., Levenston, M. E., Jin, M., Frank, E. H. Cartilage Tissue Remodeling in Response to Mechanical Forces. Annual Review of Biomedical Engineering. 2 (1), 691-713 (2000).
  4. Munster, S., et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proceedings of the National Academy of Sciences of the USA. 110, 12197-12202 (2013).
  5. Vader, D., Kabla, A., Weitz, D., Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE. 4, 5902 (2009).
  6. Badylak, S. F. The extracellular matrix as a scaffold for tissue reconstruction. Seminars in Cell & Developmental Biology. 13 (5), 377-383 (2002).
  7. Natan, S., Koren, Y., Shelah, O., Goren, S., Lesman, A. . Molecular Biology of the Cell. 31 (14), 1474-1485 (2020).
  8. Ban, E., et al. Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces. Biophysical Journal. 114 (2), 450-461 (2018).
  9. Kim, J., et al. Stress-induced plasticity of dynamic collagen networks. Nature Communications. 8, 842 (2017).
  10. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., Janmey, P. A. Nonlinear elasticity in biological gels. Nature. 435, 191-194 (2005).
  11. Wen, Q., Basu, A., Janmey, P. A., Yodh, A. G. Non-affine deformations in polymer hydrogels. Soft Matter. 8, 8039-8049 (2012).
  12. Muiznieks, L. D., Keeley, F. W. Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective. Biochimica et Biophysica Acta. 1832, 866-875 (2012).
  13. Brown, A. E. X., Litvinov, R. I., Discher, D. E., Purohit, P. K., Weisel, J. W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science. 325, 741-744 (2009).
  14. Carroll, S. F., Buckley, C. T., Kelly, D. J. Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. Frontiers in Bioengineering and Biotechnology. 5, 73 (2017).
  15. Livne, A., Bouchbinder, E., Geiger, B. Cell reorientation under cyclic stretching. Nature Communications. 5, 3938 (2014).
  16. Wang, L., et al. Patterning cellular alignment through stretching hydrogels with programmable strain gradients. ACS Applied Materials & Interfaces. 7, 15088-15097 (2015).
  17. Xu, G. K., Feng, X. Q., Gao, H. Orientations of Cells on Compliant Substrates under Biaxial Stretches: A Theoretical Study. Biophysical Journal. 114 (3), 701-710 (2017).
  18. Chagnon-Lessard, S., Jean-Ruel, H., Godin, M., Pelling, A. E. Cellular orientation is guided by strain gradients. Integrative Biology (United Kingdom). 9 (7), 607-618 (2013).
  19. Lu, J., et al. Cell orientation gradients on an inverse opal substrate. ACS Applied Materials & Interfaces. 7 (19), 10091-10095 (2015).
  20. Baker, B. M., Chen, C. S. Deconstructing the third dimension – 3D culture microenvironments alter cellular cues. Journal of Cell Science. 125, 3015-3024 (2012).
  21. Bono, N., et al. Unraveling the role of mechanical stimulation on smooth muscle cells: a comparative study between 2D and 3D models. Biotechnology and Bioengineering. 113, 2254-2263 (2016).
  22. Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology. 8, 839-845 (2007).
  23. Riehl, B. D., Park, J. H., Kwon, I. K., Lim, J. Y. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Engineering Part B: Reviews. 18, 288-300 (2012).
  24. Flexcell. Linear Tissue Train Culture Plate. Flexcell. , (2019).
  25. Flexcell. Tissue Train. Flexcell. , (2019).
  26. CellScale. MCT6 Stretcher. CellScale. , (2019).
  27. STREX. STB-150. STREX. , (2019).
  28. STREX. Stretch Chambers. STREX. , (2019).
  29. Kamble, H., Barton, M. J., Jun, M., Park, S., Nguyen, N. T. Cell stretching devices as research tools: engineering and biological considerations. Lab on a Chip. 16, 3193-3203 (2016).
  30. Weidenhamer, N. K., Tranquillo, R. T. Influence of cyclic mechanical stretch and tissue constraints on cellular and collagen alignment in fibroblast-derived cell sheets. Tissue Engineering Part C: Methods. 19, 386-395 (2013).
  31. Yung, Y. C., Vandenburgh, H., Mooney, D. J. Cellular strain assessment tool (CSAT): precision-controlled cyclic uniaxial tensile loading. Journal of Biomechanics. 42, 178-182 (2009).
  32. Chen, K., et al. Role of boundary conditions in determining cell alignment in response to stretch. Proceedings of the National Academy of Sciences of the USA. 115, 986-991 (2018).
  33. Heher, P., et al. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia. 24, 251-265 (2015).
  34. Foolen, J., Deshpande, V. S., Kanters, F. M. W., Baaijens, F. P. T. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials. 33, 7508-7518 (2012).
  35. Walker, M., Godin, M., Pelling, A. E. A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix. Biomedical Microdevices. 20, 43 (2018).
  36. Zhao, R. G., Boudou, T., Wang, W. G., Chen, C. S., Reich, D. H. Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Advanced Materials. 25, 1699-1705 (2013).
  37. Li, Y. H., et al. Magnetically actuated cell-laden micro-scale hydrogels for probing strain-induced cell responses in three dimensions. NPG Asia Materials. 8, 238 (2016).
  38. Li, Y. H., et al. An approach to quantifying 3D responses of cells to extreme strain. Scientific Reports. 6, 19550 (2016).
  39. Humphrey, J. D., et al. A theoretically-motivated biaxial tissue culture system with intravital microscopy. Biomechanics and Modeling in Mechanobiology. 7, 323-334 (2008).
  40. Niklason, L. E., et al. Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proceedings of the National Academy of Sciences of the USA. 107, 3335-3339 (2010).
  41. Roitblat Riba, A., et al. Straining 3D hydrogels with uniform z-axis strains while enabling live microscopy imaging. Annals of Biomedical Engineering. , (2019).
  42. Gomez, D., Natan, S., Shokef, Y., Lesman, A. Mechanical interaction between cells facilitates molecular transport. Advanced Biosystems. 3 (12), 1900192 (2019).
  43. Schindelin, J., et al. Fiji: an open- source platform for biological-image analysis. Nature Methods. 9, 676-682 (2012).
  44. EPFL Switzerland. OrientationJ plug in. EPFL Switzerland. , (2019).
  45. Goren, S., Koren, Y., Xu, X., Lesman, A. Elastic anisotropy governs the decay of cell-induced displacements. Biophysical Journal. 118 (5), 1152-1164 (2019).
  46. Notbohm, J., Lesman, A., Tirrell, D. A., Ravichandran, G. Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers. Integrative Biology. 7 (10), 1186-1195 (2015).
  47. Lesman, A., Notbohm, J., Tirrell, D. A., Ravichandran, G. Contractile forces regulate cell division in three-dimensional environments. Journal of Cell Biology. 205 (2), 155-162 (2014).
  48. Cha, C. Y., et al. Tailoring Hydrogel Adhesion to Polydimethylsiloxane Substrates Using Polysaccharide Glue. Angewandte Chemie International Edition. 52, 6949-6952 (2019).
  49. Wirthl, D., et al. Instant tough bonding of hydrogels for soft machines and electronics. Science Advances. 3, (2017).
  50. Juarez-Moreno, J. A., Avila-Ortega, A., Oliva, A. I., Aviles, F., Cauich-Rodriguez, J. V. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Applied Surface Science. 349, 763-773 (2015).
  51. Kim, H. T., Jeong, O. C. PDMS surface modification using atmospheric pressure plasma. Microelectronic Engineering. 88, 2281-2285 (2011).
  52. Prasad, B. R., et al. Controlling cellular activity by manipulating silicone surface roughness. Colloids and Surfaces. 78, 237-242 (2010).
check_url/kr/61671?article_type=t

Play Video

Cite This Article
Kolel, A., Roitblat Riba, A., Natan, S., Tchaicheeyan, O., Saias, E., Lesman, A. Controlled Strain of 3D Hydrogels under Live Microscopy Imaging. J. Vis. Exp. (166), e61671, doi:10.3791/61671 (2020).

View Video