Summary

测量生物控制产品的挥发性和非挥发性抗真菌活性

Published: December 05, 2020
doi:

Summary

我们描述了一种基于阿加的改进方法,旨在量化植物衍生产品的抗真果效应。可通过本议定书评估对抗真果活动的挥发性和非挥发性贡献。此外,在一项实验设置中,可在关键发育阶段测量对真菌的疗效。

Abstract

所述协议基于插头传输技术,可准确确定微生物数量及其发育阶段。特定数量的孢子分布在阿加板上。这种阿加板的孵育期为一定时期,使真菌达到预期的发展阶段,但不需要孵化的孢子除外。下一步,由孢子、催眠或菌斑覆盖的 Agar 插头将被提取并转移到含有抗真菌化合物的 agar 介质中,以测试放置在离真菌或接触的距离。此方法适用于测试液体提取物和固体样品(粉末)。它特别适合量化挥发性和非挥发性制剂在生物活性混合物中的相对贡献,并确定其影响,特别是对孢子、早期催眠和菌精的影响。

该方法与生物控制产品,特别是植物衍生产品抗真菌活性的定性具有高度相关性。事实上,对于植物处理,结果可用于指导应用模式的选择和建立触发阈值。

Introduction

全球水果和蔬菜损失可能高达产量的50%,主要由于田间或收获后储存2,3的真菌变质造成的食物腐烂,尽管自20世纪4世纪中叶以来大量使用合成杀菌剂。正在重新考虑使用这些物质,因为它对环境和健康构成严重危害。由于这些药物的有害后果正在整个生态系统中显现出来,而且潜在的健康影响的证据已经累积了5,6,新的替代旧的预防策略正在开发用于收获前和收获后治疗7,8,9。因此,我们面临的挑战是双重的。新的杀菌策略首先必须保持食品保护对植物病原体的功效水平,其次,有助于大幅减少农业做法的环境足迹。为了实现这一雄心勃勃的目标,在植物进化的自然防御的启发下,提出了战略,因为超过1000种植物因其抗菌特性而得到强调。例如,开发天然杀菌剂对抗植物病原体的植物是探索开发新的生物控制产品的新资源。精油是这类的旗舰分子。例如,Origanum精油保护番茄植物免受10号温室的灰霉菌的侵害,而Solideago甘蔗剂L.和卡西亚精油已被证明可以保护收获后的草莓免受灰霉菌的损害11,12。这些例子说明,生物控制,特别是植物衍生产品,是一种结合了生物功效和环境可持续性的解决方案。

因此,植物是作物保护行业潜在利益分子的重要资源。然而,只有少数植物产品被建议用作生物控制产品,即使它们被普遍认为是安全的,非植物毒性和环保的2。观察到从实验室到现场的转换存在一些困难,例如在体内2、9中应用后疗效降低。因此,提高实验室测试的能力以更好地预测现场效果变得非常重要。在这方面,植物衍生产品的抗真果测试方法对于评估其抗真果效果和确定其最佳使用条件都是必要的。具体来说,生物控制产品通常不如化学杀菌剂有效,因此更好地了解其作用模式对于提出适当的配方、确定在田间的应用模式以及确定病原体的哪个发育阶段容易受到候选生物制品的影响非常重要。

目前处理抗菌和抗真菌活动的方法包括扩散方法,如阿加盘扩散、稀释、生物电图和流动细胞测量13.这些技术中,更具体地说,标准的抗真菌易感性测试(agar-磁盘扩散和稀释检测)非常适合评估液体悬浮剂中细菌和真菌孢子上可溶性化合物的抗菌活性14.然而,这些方法通常不适合测试固体化合物,如干植物粉末或量化在霉菌生长期间的抗真菌活性,因为它们需要孢子稀释或孢子在阿加板上传播和/或稀释抗真菌化合物13.在食物中毒方法中,含有抗真菌剂的阿加板接种了直径为5-7毫米的磁盘,从7天老真菌培养物中采样,而不考虑启动菌的精确数量。孵化后,抗真菌活性被确定为径向生长抑制的百分比17,18,19.通过这种方法,我们可以评估我天体生长的反真菌活动。相比之下,进行阿加稀释法可以确定直接接种含有抗真菌化合物的阿加板表面孢子上的抗真菌活性13,20,21.这两种方法在抗真果活动方面具有互补性。然而,这是两种并行使用的独立技术,不能提供准确并排比较孢子和菌体上抗真菌化合物的相对功效17,20,22 由于启动真菌材料的数量在两种方法中有所不同。此外,植物衍生产品的抗真菌活性往往来自植物合成的抗真菌分子与面对病原体的组合。这些分子包括蛋白质、肽23,24代谢物具有广泛的化学多样性,属于不同类别的分子,如多酚、三苯、藻类25,葡萄糖素8,和有机硫化合物26.其中一些分子在病原体攻击期间挥发性或变挥发性27.这些制剂通常是水溶性差和高蒸汽压力化合物,必须通过水蒸馏作为精油回收,其中一些抗菌活动已经建立28.已开发出蒸汽相介导易感性检测,以测量蒸发和通过蒸汽相迁移后挥发性化合物的抗菌活性29.这些方法基于在距离微生物培养物较远的地方引入抗真菌化合物29,30,31,32,33.在常用的蒸汽相阿加检测中,精油沉积在纸盘上,并放置在培养皿盖的中心,距离细菌或真菌孢子悬架(在 agar 介质上传播)很远。然后以与 agar-磁盘扩散方法相同的方式测量生长抑制区的直径20,24.还开发了其他方法,以提供对精油的蒸汽相抗真菌性的定量测量,这种测量方法来自计算抑制性蒸汽相介导抗菌活性的肉汤稀释方法32,或从阿加磁盘扩散检测中提取31.这些方法通常特定于蒸汽相活动研究,不适合接触抑制检测。这排除了确定挥发性和非挥发性制剂对复杂生物活性混合物抗真菌活动的相对贡献。

我们开发的定量方法旨在测量干植物粉末对受控孢子数量的抗真菌作用,并生长沉积在阿加介质表面的菌株,以再现植物病变在感染植物15 期间的空中生长,以及相互连接的my天体网络16。该方法是基于阿加稀释和食物中毒方法的改进实验设置,在同一实验设置中,还允许并排量化挥发性和非挥发性抗真果代谢物的贡献。在这项研究中,该方法以三种特征良好的抗真真药制剂的活动为基准。

Protocol

1. 伊诺库拉准备 在实验之前,铺设5μL的三叶草。SBT10-2018 孢子储存在马铃薯脱糖agar介质(PDA)的4°C,在30°C下孵育4天,定期照射光线,促进锥状形成42(图1,面板A)。注: 特里乔德玛。SBT10-2018已被与木材分离,并作为本研究的模型,以快速生长和容易孢子回收。我们的实验室保存了这种菌株。 恢复锥体(…

Representative Results

为了评估定量方法区分不同类型抗真果化合物作用模式的能力,我们比较了三种知名抗真果剂的疗效。卡本达齐姆是一种非挥发性合成杀菌剂,已广泛用于控制植物中广泛的真菌疾病39,40。提木斯粗俗精油主要被描述为其抗菌和抗真菌活性,并被用作天然食品防腐剂41。大蒜粉被选为植物衍生生物制品的模型。传统上,它一直?…

Discussion

此处介绍的方法允许评估最小加工植物衍生产品的抗真菌特性。在此协议中,使用 2 mm 玻璃珠实现在 agar 表面上孢子的均质分布。这一步骤要求处理技能正确分配珠子并获得可重复的结果,最终允许比较真菌生长不同阶段的抗真菌效果。我们发现,5毫米玻璃珠或过度旋转,而在传播过程中均质可能导致可变的生长直径。因此,我们建议在实验前进行培训,以掌握孢子分布。此外,当必须测试植物…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们非常感谢弗兰克·耶茨的宝贵建议。这项工作得到了苏普生物技术公司的支持。

Materials

Autoclave-vacuclav 24B+ Melag
Carbendazim Sigma  378674-100G
Distilled water
Eppendorf tubes Sarstedt 72.706 1.5 mL
Falcons tubes Sarstedt 547254 50 mL
Five millimeters diameter stainless steel tube retail store /
Food dehydrator Sancusto six trays
Garlic powder Organic shop
Glass beads CLOUP 65020 Equation 1 2 mm
Hemocytometer counting cell Jeulin 713442 /
Incubator Memmert  UM400 30 °C
Knife mill Bosch TSM6A013B
Manual cell counter Labbox HCNT-001-001 /
Measuring ruler retail store
Microbiological safety cabinets FASTER FASTER BHA36, TYPE II, Cat 2
Micropipette Mettler-Toledo 17014407 100 – 1000 µL
Micropipette Mettler-Toledo 17014411 20 – 200 µL
Micropipette Mettler-Toledo 17014412 2 – 20 µL
Petri dish Sarstedt 82-1194500 Equation 1 55 mm
Petri dish Sarstedt 82-1473  Equation 1 90 mm
Pipette Controllers-EASY 60 Labbox EASY-P60-001 /
Potato Dextrose Agar Sigma  70139-500G
Precision scale-RADWAG Grosseron B126698 AS220.R2-ML 220g/0.1mg 
Rake Sarstedt 86-1569001 /
Reverse microscope AE31E trinocular Grosseron M097917 /
Sterile graduated pipette Sarstedt 1254001 10 mL
Thymus essential oil Drugstore Essential oil 100%
Tips 1000 µL  Sarstedt 70.762010
Tips 20 µL  Sarstedt 70.760012
Tips 200 µL Sarstedt 70.760002
Tooth pick retail store
Trichoderma spp strain Strain of LRPIA laboratory
Tween-20  Sigma  P1379-250ML
Tween-80 Sigma  P1754-1L
Tweezers Labbox FORS-001-002 /

References

  1. FAO. Global food losses and food waste – Extent, causes and prevention. FAO. , (2011).
  2. da Cruz Cabral, L., Fernández Pinto, V., Patriarca, A. Application of plant compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology. 166 (1), 1-14 (2013).
  3. Romanazzi, G., Smilanick, J. L., Feliziani, E., Droby, S. Postharvest biology and technology integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology. 113, (2016).
  4. Morton, V., Staub, T. A Short History of Fungicides. APSnet Feature Articles. (1755), 1-12 (2008).
  5. Brandhorst, T. T., Klein, B. S. Uncertainty surrounding the mechanism and safety of the post- harvest fungicide Fludioxonil. Food and Chemical Toxicology. 123, 561-565 (2019).
  6. Bénit, P., et al. Evolutionarily conserved susceptibility of the mitochondrial respiratory chain to SDHI pesticides and its consequence on the impact of SDHIs on human cultured cells. PLoS ONE. 14 (11), 1-20 (2019).
  7. Usall, J., Torres, R., Teixidó, N. Biological control of postharvest diseases on fruit: a suitable alternative. Current Opinion in Food Science. 11, 51-55 (2016).
  8. Tripathi, P., Dubey, N. K. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology. 32 (3), 235-245 (2004).
  9. Abbey, J. A., et al. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)-prospects and challenges. Biocontrol Science and Technology. 29 (3), 241-262 (2019).
  10. Soylu, E. M., Kurt, &. #. 3. 5. 0. ;., Soylu, S. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology. 143 (3), 183-189 (2010).
  11. Liu, S., Shao, X., Wei, Y., Li, Y., Xu, F., Wang, H. Solidago canadensis L. essential oil vapor effectively inhibits botrytis cinerea growth and preserves postharvest quality of strawberry as a food model system. Frontiers in Microbiology. 7, 0 (2016).
  12. El-Mogy, M. M., Alsanius, B. W. Cassia oil for controlling plant and human pathogens on fresh strawberries. Food Control. 28 (1), 157-162 (2012).
  13. Balouiri, M., Sadiki, M., Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 6 (2), 71-79 (2016).
  14. Arikan, S. Current status of antifungal susceptibility testing methods. Medical Mycology. 45 (7), 569-587 (2007).
  15. Girmay, Z., Gorems, W., Birhanu, G., Zewdie, S. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express. 6 (1), 87 (2016).
  16. Fischer, M. S., Glass, N. L. Communicate and fuse: how filamentous fungi establish and maintain an interconnected mycelial network. Frontiers in Microbiology. 10, 1-20 (2019).
  17. Mohana, D. C., Raveesha, K. A. Anti-fungal evaluation of some plant extracts against some plant pathogenic field and storage fungi. Journal of Agricultural Technology. 4 (1), 119-137 (2007).
  18. Balamurugan, S. In vitro activity of aurantifolia plant extracts against phytopathogenic fungi phaseolina. International Letters of Natural Sciences. 13, 70-74 (2014).
  19. Ameziane, N., et al. Antifungal activity of Moroccan plants against citrus fruit pathogens. Agronomy for sustainable development. 27 (3), 273-277 (2007).
  20. Rizi, K., Murdan, S., Danquah, C. A., Faull, J., Bhakta, S. Development of a rapid, reliable and quantitative method – “SPOTi” for testing antifungal efficacy. Journal of Microbiological Methods. 117, 36-40 (2015).
  21. Imhof, A., Balajee, S. A., Marr, K., Marr, K. New methods to assess susceptibilities of Aspergillus isolates to caspofungin. Microbiology. 41 (12), 5683-5688 (2003).
  22. Goussous, S. J., Abu el-Samen, F. M., Tahhan, R. A. Antifungal activity of several medicinal plants extracts against the early blight pathogen (Alternaria solani). Archives of Phytopathology and Plant Protection. 43 (17), 1745-1757 (2010).
  23. Ng, T. B. Antifungal proteins and peptides of leguminous and non-leguminous origins. Peptides. 25 (7), 1215-1222 (2004).
  24. Hu, Z., Zhang, H., Shi, K. Plant peptides in plant defense responses. Plant Signaling and Behavior. 13 (8), (2018).
  25. Iriti, M., Faoro, F. Chemical diversity and defence metabolism: How plants cope with pathogens and ozone pollution. International Journal of Molecular Sciences. 10 (8), 3371-3399 (2009).
  26. Lanzotti, V., Bonanomi, G., Scala, F. What makes Allium species effective against pathogenic microbes. Phytochemistry Reviews. 12 (4), 751-772 (2013).
  27. Kyung, K. H. Antimicrobial properties of allium species. Current Opinion in Biotechnology. 23 (2), 142-147 (2012).
  28. Hyldgaard, M., Mygind, T., Meyer, R. L. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in microbiology. 3, 12 (2012).
  29. Bueno, J. Models of evaluation of antimicrobial activity of essential oils in vapour phase: a promising use in healthcare decontamination. Natural Volatiles & Essential Oils. 2 (2), 16-29 (2015).
  30. Doi, N. M., Sae-Eaw, A., Suppakul, P., Chompreeda, P. Assessment of synergistic effects on antimicrobial activity in vapour- and liquidphase of cinnamon and oregano essential oils against Staphylococcus aureus. International Food Research Journal. 26 (2), 459-467 (2019).
  31. Amat, S., Baines, D., Alexander, T. W. A vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens. Letters in Applied Microbiology. 65 (6), 489-495 (2017).
  32. Feyaerts, A. F., et al. Essential oils and their components are a class of antifungals with potent vapour-phase-mediated anti-Candida activity. Scientific Reports. 8 (1), 1-10 (2018).
  33. Wang, T. H., Hsia, S. M., Wu, C. H., Ko, S. Y., Chen, M. Y., Shih, Y. H., Shieh, T. M., Chuang, L. C. Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms. PLoS ONE. 11 (9), 1-17 (2016).
  34. Dean, R., et al. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology. 13 (4), 414-430 (2012).
  35. Leadbeater, A. Recent developments and challenges in chemical disease control. Plant Protection Science. 51 (4), 163-169 (2015).
  36. Jin, C., Zeng, Z., Fu, Z., Jin, Y. Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice. Chemosphere. 160, 349-358 (2016).
  37. Kumar, R., Ghatak, A., Balodi, R., Bhagat, A. P. Decay mechanism of postharvest pathogens and their management using non-chemical and biological approaches. Journal of Postharvest Technology. 6 (1), 1-11 (2018).
  38. Talibi, I., Boubaker, H., Boudyach, E. H., Ait Ben Aoumar, A. Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiology. 117 (1), 1-17 (2014).
  39. Arya, R., Sharma, R., Malhotra, M., Kumar, V., Sharma, A. K. Biodegradation Aspects of Carbendazim and Sulfosulfuron: Trends, Scope and Relevance. Current Medicinal Chemistry. 22 (9), 1147-1155 (2015).
  40. European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance carbendazim. EFSA Journal. 8 (5), 1-76 (2010).
  41. Sakkas, H., Papadopoulou, C. Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of Microbiology and Biotechnology. 27 (3), 429-438 (2017).
  42. Steyaert, J. M., Weld, R. J., Mendoza-Mendoza, A., Stewart, A. Reproduction without sex: conidiation in the filamentous fungus Trichoderma. Microbiology. 156, 2887-2900 (2010).
  43. Leontiev, R., Hohaus, N., Jacob, C., Gruhlke, M. C. H., Slusarenko, A. J. A Comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Scientific Reports. 8 (1), 1-19 (2018).
  44. Scorzoni, L., et al. The use of standard methodology for determination of antifungal activity of natural products against medical yeasts Candida sp and Cryptococcus sp. Brazilian Journal of Microbiology. 38 (3), 391-397 (2007).
check_url/kr/61798?article_type=t

Play Video

Cite This Article
Gligorijevic, V., Benel, C., Gonzalez, P., Saint-Pol, A. Measuring Volatile and Non-volatile Antifungal Activity of Biocontrol Products. J. Vis. Exp. (166), e61798, doi:10.3791/61798 (2020).

View Video