Summary

Modèle de poisson-zèbre de métastases de neuroblastome

Published: March 14, 2021
doi:

Summary

Cet article présente la méthode de développement, de caractérisation et de suivi en temps réel des métastases tumorales dans le modèle de poisson zèbre du neuroblastome, en particulier dans la ligne transgénique de poisson-zèbre avec surexpression de MYCN et LMO1, qui développe des métastases spontanément.

Abstract

Le poisson-zèbre est devenu un modèle animal important pour étudier les maladies humaines, en particulier le cancer. Outre les technologies robustes d’édition transgénique et du génome appliquées à la modélisation du poisson-zèbre, la facilité d’entretien, la productivité à haut rendement et la puissante imagerie vivante font du poisson-zèbre un système modèle précieux pour étudier les métastases et les bases cellulaires et moléculaires sous-jacentes à ce processus in vivo. Le premier modèle de métastases du neuroblastome du poisson-zèbre (NB) a été développé en surexprimant deux oncogènes, MYCN et LMO1, sous contrôle du promoteur dopamine-bêta-hydroxylase (dβh). MyCN et LMO1 co-surexprimés ont conduit à la réduction de la latence et à l’augmentation de la pénétrance de la neuroblastomagenèse, ainsi qu’à une métastase à distance accélérée des cellules tumorales. Ce nouveau modèle réitère de manière fiable de nombreuses caractéristiques clés du NB métastatique humain, y compris l’implication d’altérations génétiques cliniquement pertinentes et associées aux métastases; développement naturel et spontané de métastases in vivo; et les sites conservés de métastases. Par conséquent, le modèle du poisson-zèbre possède des avantages uniques pour disséquer le processus complexe de métastases tumorales in vivo.

Introduction

Le poisson-zèbre a été largement utilisé et appliqué à plusieurs domaines de recherche, en particulier dans le cancer. Ce modèle offre de nombreux avantages, tels que sa reproduction robuste, son entretien rentable et sa visualisation polyvalente de la croissance tumorale et des métastases, qui font du poisson-zèbre un outil puissant pour étudier et étudier les bases cellulaires et moléculaires de la tumorigenèse et des métastases. De nouvelles techniques de cartographie du génome à grande échelle, de transgénèse, de surexpression ou d’assommation des gènes, de transplantation cellulaire et de criblages chimiques ont considérablement augmenté la puissance du modèle du poisson-zèbre1. Au cours des dernières années, de nombreuses lignées de poissons-zèbres ont été développées pour étudier la tumorigenèse et les métastases d’une variété de cancers humains, y compris, mais sans s’y limiter, la leucémie, le mélanome, le rhabdomyosarcome et le carcinome hépatocellulaire2,3,4,5. De plus, le premier modèle de poisson-zèbre de neuroblastome (NB) a été généré en surexprimant MYCN, un oncogène, dans le système nerveux sympathique périphérique (PSNS) sous le contrôle du promoteur de la dopamine-bêta-hydroxylase (dβh). Avec ce modèle, il a été démontré que l’ALK activé peut créer une synergie avec MYCN pour accélérer l’apparition de la tumeur et augmenter la pénétrance tumorale in vivo6.

NB est dérivé de la lignée sympatho-surrénale des cellules de la crête neurale et est un cancer hautement métastatique chez les enfants7. Il est responsable de 10 % des décès liés au cancer pédiatrique8. Largement métastasé au moment du diagnostic, nb peut être cliniquement présenté comme des tumeurs provenant principalement le long de la chaîne des ganglions sympathiques et de la médullosurrénale de PSNS9,10. L’amplification du MYCN est généralement associée à de mauvais résultats chez les patients atteints de NB11,12. De plus, l’OVM1 a été identifié comme un gène critique de susceptibilité au NB dans les cas à haut risque13,14. Des études ont montré que la coexpression transgénique de MYCN et de LMO1 dans le PSNS du modèle du poisson-zèbre favorise non seulement l’apparition précoce du NB, mais induit également des métastases généralisées dans les tissus et les organes qui sont similaires aux sites couramment observés chez les patients atteints de NB13 à haut risque. Très récemment, un autre phénotype métastatique de NB a également été observé dans un nouveau modèle de POISSON-zèbre de NB, dans lequel MYCN et Lin28B, codant pour une protéine de liaison à l’ARN, sont surexprimés sous le contrôle du promoteur dβh16.

L’approche transgénique stable chez le poisson-zèbre est souvent utilisée pour étudier si la surexpression d’un gène d’intérêt pourrait contribuer au développement normal et à la pathogenèse de la maladie14,15. Cette technique a été utilisée avec succès pour démontrer l’importance de plusieurs gènes et voies pour la tumorigenèse NB6,16,17,18,19,20. Cet article présentera comment la lignée de poissons transgénique qui surexprime à la fois MYCN et LMO1 dans le PSNS a été créée et comment il a été démontré que la coopération de ces deux oncogènes accélère l’apparition de la tumorigenèse NB et des métastases13. Tout d’abord, la lignée transgénique qui surexprime EGFP-MYCN sous le contrôle du promoteur dβh (lignée MYCN désignée) a été développée en injectant la construction dβh-EGFP-MYCN dans une étape unicellulaire d’embryons AB de type sauvage (WT), comme décrit précédemment6,17. Une lignée transgénique distincte qui surexprime LMO1 dans la PSNS (lignée désignée LMO1) a été développée en cojectant deux constructions d’ADN, dβh-LMO1 et dβh-mCherry, dans des embryons WT au stade unicellulaire13. Il a déjà été démontré que les constructions à double ADN co-projetées peuvent être cointégrées dans le génome du poisson; par conséquent, LMO1 et mCherry sont coexprimés dans les cellules PSNS des animaux transgéniques. Une fois que les embryons F0 injectés ont atteint la maturité sexuelle, ils ont ensuite été croisés avec des poissons WT pour l’identification de poissons positifs avec intégration transgénique(s). En bref, la progéniture F1 a d’abord été examinée par microscopie fluorescente pour l’expression de mCherry dans les cellules PSNS. L’intégration germinale du LMO1 chez les poissons mCherry-positifs a été confirmée par PCR génomique et séquençage. Après identification réussie de chaque lignée transgénique, la descendance de poissons transgéniques hétérozygotes MYCN et LMO1 a été croisée pour générer une lignée de poissons composée exprimant à la fois MYCN et LMO1 (désigné MYCN; Ligne LMO1). MYCN porteur de tumeur; Les poissons LMO1 ont été surveillés par microscopie fluorescente toutes les deux semaines pour détecter la présence de tumeurs métastatiques dans les régions éloignées du site primaire, région de la glande interrénale (IRG, équivalent poisson-zèbre de la glande surrénale humaine)13. Confirmer la métastase des tumeurs dans MYCN; Des analyses LMO1, histologiques et immunohistochimiques ont été appliquées.

Protocol

Toutes les méthodes de recherche utilisant le poisson-zèbre et les soins / entretien des animaux ont été effectuées conformément aux directives institutionnelles de la Mayo Clinic. 1. Préparation et micro-injection de constructions transgéniques pour le développement de la ligne de poisson-zèbre transgénique LMO1 avec surexpression dans PSNS Pour développer le clone d’entrée LMO1-pDONR221 , amplifier la région codante du LMO1 humain à parti…

Representative Results

Pour déterminer si le LMO1 est en synergie avec le MYCN pour affecter la pathogenèse du NB, des constructions transgéniques qui déterminent l’expression de LMO1 (dβh:LMO1 et dβh:mCherry) ou de MYCN (dβh:EGFP-MYCN) dans les cellules PSNS sous contrôle du promoteur dβh ont été injectées dans des embryons de poisson-zèbre13. Comme l’illustre la figure 1A, après le développement de …

Discussion

Le poisson-zèbre est couramment utilisé dans la recherche depuis quelques décennies, en particulier dans la recherche sur le cancer, pour des raisons évidentes, telles que sa facilité d’entretien, sa reproduction robuste et ses avantages évidents pour l’imagerie in vivo1,28. Le modèle du poisson-zèbre peut être facilement manipulé embryonnairement en raison de sa fécondation externe et de son développement, ce qui complète bien les organ…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Ce travail a été soutenu par une subvention R01 CA240323 (S.Z.) de l’Institut national du cancer; une subvention W81XWH-17-1-0498 (S.Z.) du Département de la Défense des États-Unis (DoD); un prix V Scholar de la V Foundation for Cancer Research (S.Z.) et une subvention de plateforme du Mayo Center for Biomedical Discovery (S.Z.); et le soutien du Mayo Clinic Cancer Center et du Center for Individualized Medicine (S.Z.).

Materials

3,3’-Diaminobenzidine (DAB) Vector Kit Vector SK-4100
Acetic Acid Fisher Scientific / Acros Organic 64-19-7
Agarose GP2 Midwest Scientific 009012-36-6
Anti-Tyrosine Hydroxylase (TH) Antibody Pel-Freez P40101
Avidin/Biotin Blocking Kit Vector SP-2001
BOND Intense R Detection Leica Biosystems DS9263
BOND primary antibody diluent Leica Biosystems Newcastle, Ltd. AR9352
BOND-MAX IHC instrument Leica Biosystems Newcastle, Ltd. N/A fully automated IHC staining system
CH211-270H11 BAC clone BACPAC resources center (BRFC) N/A
Compound microscope equipped with DP71 camera Olympus AX70
Cytoseal XYL (xylene based mounting medium) Richard-Allan Scientific 8312-4
Eosin Leica 3801601 ready-to-use (no preparation needed)
Ethanol Carolina 86-1263
Expand Long Template PCR System Roche Applied Science, IN 11681834001
Gateway BP Clonase II enzyme mix Invitrogen, CA 11789-020
Gateway LR Clonase II enzyme mix Invitrogen, CA 11791-100
Goat anti-Rb secondary antibody (Biotinylated) Dako E0432
Hematoxylin Solution, Harris Modified Sigma Aldrich Chemical Company Inc. / SAFC HHS-32-1L
HRP Avidin D Vector A-2004
Hydrochloric Acid Aqua Solutions 4360-1L
Hydrogen Peroxide, 3% Fisher Scientific H324-500
I-SceI enzyme New England Biolabs, MA R0694L
Kanamycin sulfate Teknova, Inc. K2150
Kimberly-Clark Professional Kimtech Science Kimwipes Fisher Scientific 34133
Lithium Carbonate Sigma Aldrich Chemical Company Inc. / SAFC 554-13-2
Microtome for sectioning Leica Biosystems RM2255
One Shot TOP10 Chemically Competent E. coli Invitrogen C404006
p3E-polyA  Dr. Chi-Bin Chien, Univ. of Utah N/A a generous gift
(Please refer to webpage http://tol2kit.genetics.utah.edu/index.php/Main_Page to obtain material, which is freely distrubted as described.)
Parafin wax Surgipath Paraplast 39603002 Parrafin to parafin
Paraformaldehyde Alfa Aesar A11313
pDEST vector (modified destination vector containing I-SceI recognition sites) Dr. C. Grabher, Karlsruhe Institute of Technology, Karlsruhe, Germany N/A a generous gift
pDONR 221 gateway donor vector Thermo Fisher Scientific 12536-017
pDONRP4-P1R donor vector  Dr. Chi-Bin Chien, Univ. of Utah N/A a generous gift
Phenol red, 0.5% Sigma Aldrich  P0290
Phosphate Buffered Saline (PBS), 10X BioRad 1610780
Picrosirrius red stain kit Polysciences 24901-250
pME-mCherry Addgene 26028 (DBH construct)
Proteinase K, recombinant, PCR Grade Roche 21712520
QIAprep Spin MiniPrep Kit Qiagen 27104
RDO Rapid Decalcifier Apex Enginerring RDO04
Sodium Azide (NaN3) Sigma Aldrich 26628-22-8
Stereo fluorescence microscope Leica MZ10F
Stereoscopic fluorescence microscope equipped with a digital sight DS-U1 camera for imaging Nikon SMZ-1500
Taq DNA Polymerase New England Biolabs, MA M0273L
Tissue-Tek VIP® 6 AI Vacuum Infiltration Processor Sakura N/A Model #: VIP-6-A1
Tricaine-S Western Chemical Incorporated 20513
Xylene Thermo Fisher Scientific X3P1GAL

References

  1. Veldman, M., Lin, S. Zebrafish as a developmental model organism for pediatric research. Pediatric Research. 64, 470-476 (2008).
  2. Feitsma, H., Cuppen, E. Zebrafish as a cancer model. Molecular Cancer Research. 6 (5), 694 (2008).
  3. Ethcin, J., Kanki, J. P., Look, A. T. Zebrafish as a model for the study of human cancer. Methods in Cell Biology. 105, 309-337 (2010).
  4. Benjamin, D. C., Hynes, R. O. Intravital imaging of metastasis in adult Zebrafish. BMC Cancer. 17 (1), 660 (2017).
  5. Kim, I. S., et al. Microenvironment-derived factors driving metastatic plasticity in melanoma. Nature Communications. 8, 14343 (2017).
  6. Zhu, S., et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell. 21 (3), 362-373 (2012).
  7. Maris, J. M., Hogarty, M. D., Bagatell, R., Cohn, S. L. Neuroblastoma. Lancet. 369 (9579), 2106-2120 (2007).
  8. Park, J. R., et al. Children’s oncology group’s 2013 blueprint for research: neuroblastoma. Pediatric Blood and Cancer. 60 (6), 985-993 (2013).
  9. Hoehner, J. C., et al. A developmental model of neuroblastoma: differentiating stroma-poor tumors’ progress along an extra-adrenal chromaffin lineage. Laboratory Investigation: A Journal of Technical Methods and Pathology. 75 (5), 659-675 (1996).
  10. Tsubota, S., Kadomatsu, K. Origin and initiation mechanisms of neuroblastoma. Cell and Tissue Research. 372 (2), 211-221 (2018).
  11. Tolbert, V. P., Matthay, K. K. Neuroblastoma: Clinical and biological approach to risk stratification and treatment. Cell and Tissue Research. 372 (2), 195-209 (2018).
  12. Maris, J. M. Recent advances in neuroblastoma. New England Journal of Medicine. 362 (23), 2202-2211 (2010).
  13. Zhu, S., et al. LMO1 Synergizes with MYCN to promote neuroblastoma initiation and metastasis. Cancer Cell. 32, 310-323 (2017).
  14. Patton, E. E., Zon, L. I. The art and design of genetic screens: zebrafish. Nature Reviews Genetics. 2 (12), 956-966 (2001).
  15. Lieschke, G. J., Currie, P. D. Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics. 8 (5), 353-367 (2007).
  16. Tao, T., et al. LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors. Proceedings of the National Academy of Sciences of the United States of America. 117 (28), 16516-16526 (2020).
  17. Ung, C. Y., Guo, F., Zhang, X., Zhu, Z., Zhu, S. Mosaic zebrafish transgenesis for functional genomic analysis of candidate cooperative genes in tumor pathogenesis. Journal of Visualized Experiments. (97), e52567 (2015).
  18. Zhang, X., et al. Critical role for GAB2 in neuroblastoma pathogenesis through the promotion of SHP2/MYCN cooperation. Cell Reports. 18 (12), 2932-2942 (2017).
  19. Zimmerman, M. W., et al. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discovery. 8 (3), 320-335 (2018).
  20. Koach, J., et al. Drugging MYCN oncogenic signaling through the MYCN-PA2G4 binding interface. 암 연구학. 79 (21), 5652-5667 (2019).
  21. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Developmental Dynamics. 203 (3), 253-310 (1995).
  22. DuBois, S. G., et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. Journal of pediatric hematology/oncology. 21 (3), 181-189 (1999).
  23. Wattrus, S. J., Zon, L. I. Stem cell safe harbor: The hematopoietic stem cell niche in zebrafish. Blood Advances. 2 (21), 3063-3069 (2018).
  24. Menke, A. L., Spitsbergen, J. M., Wolterbeek, A. P., Woutersen, R. A. Normal anatomy and histology of the adult zebrafish. Toxicologic Pathology. 39 (5), 759-775 (2011).
  25. Renshaw, S. A., Trede, N. S. A model 450 million years in the making: Zebrafish and vertebrate immunity. Disease Models and Mechanisms. 5 (1), 38-47 (2012).
  26. Junqueira, L. C., Cossermelli, W., Brentani, R. Differential staining of collagens type I, II and III by Sirius Red and polarization microscopy. Archivum histologicum Japonicum (Nihon Soshikigaku Kiroku). 41 (3), 267-274 (1978).
  27. Sweat, F., Puchtler, H., Rosenthal, S. I. Sirius red F3BA as a stain for connective tissue. Archives of Pathology. 78, 69-72 (1964).
  28. Ignatius, M. S., Hayes, M., Langenau, D. M. In vivo imaging of cancer in zebrafish. Advances in Experimental Medicine and Biology. 916, 219-237 (2016).
  29. Howe, C. K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496 (7446), 498-503 (2013).
  30. Fazio, M., Ablain, J., Chuan, Y., Langenau, D. M., Zon, L. I. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nature Reviews Cancer. 20 (5), 263-273 (2020).
  31. Yoganantharjah, P., Gibert, Y. The Use of the zebrafish model to aid in drug discovery and target validation. Current Topics in Medicinal Chemistry. 17 (18), 2041-2055 (2018).
  32. Ignatius, M. S., et al. In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell. 21 (5), 680-693 (2012).
  33. Stoletov, K., Montel, V., Lester, R. D., Gonias, S. L., Klemke, R. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 104 (44), 17406-17411 (2007).
  34. Ahmed, S., et al. Neuroblastoma with orbital metastasis: ophthalmic presentation and role of ophthalmologists. Eye. 20 (4), 466-470 (2006).
  35. Papaioannou, G., McHugh, K. Neuroblastoma in childhood: review and radiological findings. Cancer Imaging Society. 5 (1), 116-127 (2005).
  36. Langenau, D. M., et al. Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish. Oncogene. 27 (30), 4242-4248 (2008).
  37. Amores, A., et al. Zebrafish hox clusters and vertebrate genome evolution. Science. 282 (5394), 1711-1714 (1998).
  38. Postlethwait, J. H., et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genetics. 18 (4), 345-349 (1998).
  39. Opazo, J. C., et al. Whole-genome duplication and the functional diversification of teleost fish hemoglobins. Molecular Biology and Evolution. 30 (1), 140-153 (2013).
check_url/kr/62416?article_type=t

Play Video

Cite This Article
Her, Z. P., Yeo, K. S., Howe, C., Levee, T., Zhu, S. Zebrafish Model of Neuroblastoma Metastasis. J. Vis. Exp. (169), e62416, doi:10.3791/62416 (2021).

View Video