Summary

超高频超声成像分析黑色素瘤Braf/Pten基因工程小鼠模型中的淋巴结体积

Published: September 08, 2021
doi:

Summary

黑色素瘤是一种非常具有侵袭性的疾病,可迅速扩散到其他器官。该协议描述了超高频超声成像的应用,结合3D渲染,以监测转移性黑色素瘤Braf / Pten小鼠模型中腹股沟淋巴结的体积。

Abstract

Tyr::CreER+,BrafCA/+,Ptenlox/lox基因工程小鼠(Braf/Pten小鼠)被广泛用作转移性黑色素瘤的体内模型。一旦原发性肿瘤被他莫昔芬治疗诱导,诱导后4-6周内观察到转移负担增加。本文展示了如何利用超高频超声(UHFUS)成像通过测量腹股沟淋巴结体积的增加来监测腹股沟淋巴结转移性受累的增加。

UHFUS系统用于使用UHFUS线性探针(22-55 MHz,轴向分辨率40μm)扫描麻醉小鼠。从腹股沟淋巴结(左侧和右侧)的B模式图像以短轴视图获取,将动物定位在背卧位。超声波记录是在电动机械臂上使用44μm步长获取的。之后,将二维(2D)B模式采集导入软件平台进行超声图像后处理,并在获取的横截面2D图像中识别和半自动分割腹股沟淋巴结。最后,随着淋巴结体积的渲染,自动获得三维(3D)体积的总重建,这也表示为绝对测量值。

这种非侵入性体内技术具有非常好的耐受性,并允许 2周内对同一实验动物安排多次成像会话。因此,评估药物治疗对转移性疾病的影响是理想的选择。

Introduction

黑色素瘤是一种侵袭性皮肤癌,通常扩散到其他皮肤部位(皮下转移),以及淋巴结、肺、肝脏、脑和骨骼1。在过去十年中,新药已被引入临床实践,并有助于提高转移性黑色素瘤患者的预期寿命。然而,局限性仍然存在,包括不同的反应时间和程度,严重的副作用以及获得性耐药性的激增1。因此,在早期阶段检测转移扩散至关重要,即当它到达局部淋巴结时。

通常进行局部淋巴结(前哨淋巴结)的活检以检查黑色素瘤细胞的存在。然而,超声成像作为检测转移性受累的非侵入性方法正在发挥作用,因为它优于临床评估,并且可以帮助避免不必要的活检234。此外,超声影像学检查似乎适用于淋巴结监测,特别是在高龄和/或合并症的情况下56。通过超声分析检测并允许区分正常和转移性淋巴结的特征包括增加大小(体积),形状从椭圆形变为圆形,不规则边缘,回声模式改变和血管形成改变(增加)7

Tyr::CreER+,BrafCA/+,Ptenlox/lox基因工程小鼠(Braf/Pten小鼠)最近已作为转移性黑色素瘤的组织特异性诱导模型8提供给科学界。在这种动物模型中,原发性肿瘤发展得非常快:在诱导从野生型(wt)布拉夫到布拉夫600E的转换以及Pten的损失后2-3周内,它们在2-3周内变得可见,而它们在4周内达到50-100 mm3的体积。在接下来的2周内,原发性肿瘤的生长伴随着其他皮肤部位,淋巴结和肺部转移负担的逐渐增加。

Braf / Pten小鼠已被广泛用于多种目的,包括解剖参与黑色素瘤发生的信号通路910,鉴定起源的黑色素瘤细胞111213,以及根据靶向治疗和免疫疗法测试新的治疗方案8141516.具体来说,我们使用Braf / Pten小鼠来证明减毒 单核细胞增多性李斯特菌 (Lmat)作为抗黑色素瘤疫苗有效。当在治疗环境中全身给药时,Lmat与整体毒性无关,因为它选择性地积聚在肿瘤部位。此外,它导致原发性黑色素瘤肿块显着减少,淋巴结和肺部转移负担减少。在分子水平上,Lmat引起黑色素瘤细胞的凋亡性杀伤,这至少部分是由于非细胞自主活动(CD4 +和CD8 + T淋巴细胞现场募集)16

当Braf / Pten小鼠用于黑色素瘤建模时,可以通过卡尺测量来监测原发性肿瘤和皮下转移的生长。然而,淋巴结和肺部的受累需要使用替代技术进行调查,可能是一种非侵入性的技术,允许研究人员随着时间的推移跟踪同一动物。本文描述了使用超声成像(图1),加上随后获得的数据的3D体积分析,用于腹股沟淋巴结大小(体积)增加的纵向监测。

Protocol

此处描述的所有方法均已获得意大利卫生部的批准(动物协议#754 / 2015-PR和#684 / 2018-PR)。 1. 黑色素瘤诱导 注意:六周龄的Tyr::CreER+,BrafCA/+,Ptenlox/lox小鼠[B6.Cg-Braftm1Mmcm Ptentm1Hwu Tg(Tyr-cre/ERT2)13Bos/BosJ(Braf/Pten)]在本研究中使用(见材料表)。 如前所述,通过在上背部约1 cm2?…

Representative Results

在 对Tyr::CreER+,BrafCA/+,Ptenlox/lox小鼠进行4-HT的皮肤涂漆后,诱导Cre活性,因此在基因组水平上从wt Braf 切换到BrafV600E,而Pten丢失(图3A)。在2-3周内,小鼠发生100%外显率的现场原发性肿瘤。从4-HT治疗(t0)四周后,原发性肿瘤达到50-100 mm3的体积,并且可以通过卡尺再测量2周((t1 和t2; 图3B</…

Discussion

本研究获得的数据证明了超声成像监测转移性黑色素瘤Braf / Pten小鼠模型腹股沟淋巴结转移性受累的能力。如前所述16,该技术对于评估药物治疗的疗效特别有用。这是因为它允许通过比较在t1 t2收集的测量值与在t0处收集的测量值来监测同一动物中淋巴结体积随时间的变化。反过来,这有助于增加所获得结果的稳健性,因为小鼠间变异性和其?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢S. Burchielli(FTGM,比萨)在动物手术方面的帮助。这项工作得到了ISPRO-Istituto per lo Studio la Prevenzione e la Rete Oncologica机构对LP的资助;MFAG #17095由AIRC-Associazione Italiana Ricerca sul Cancro授予LP。

Materials

4-hydroxytamoxifen Merck H6278 drug used for tumor induction
B6.Cg-Braftm1Mmcm Ptentm1Hwu Tg(Tyr-cre/ERT2)13Bos/BosJ (Braf/Pten) mice The Jackson Laboratory 013590
Blu gel Sooft Ialia ophthalmic solution gel
BRAFV600E antibody Spring Bioscience Corporation E19290
IsoFlo (isoflorane) Zoetis liquid for gaseous anaesthesia
MLANA antibody Thermo Fisher Scientific M2-7C10
Sigma gel Parker electrode gel
Transonic gel clear Telic SAU ultrasound gel
Veet Reckitt Benckiser IT depilatory cream
Compact Dual Anesthesia System Fujifilm, Visualsonics Inc. Isoflurane-based anesthesia system equipped with nose cone and induction chamber
MX550S Fujifilm, Visualsonics Inc. UHFUS linear probe
Vevo 3100 Fujifilm, Visualsonics Inc. UHFUS system
Vevo Imaging Station Fujifilm, Visualsonics Inc. UHFUS imaging station and Advancing Physiological Monitoring Unit endowed with heated board
Vevo Lab Fujifilm, Visualsonics Inc. software platform for ultrasound image post-processing

References

  1. Schvartsman, G., et al. Management of metastatic cutaneous melanoma: updates in clinical practice. Therapeutic Advances in Medical Oncology. 11, 1758835919851663 (2019).
  2. Blum, A., et al. Ultrasound examination of regional lymph nodes significantly improves early detection of locoregional metastases during the follow-up of patients with cutaneous melanoma – Results of a prospective study of 1288 patients. Cancer. 88 (11), 2534-2539 (2000).
  3. Olmedo, D., et al. Use of lymph node ultrasound prior to sentinel lymph node biopsy in 384 patients with melanoma: a cost-effectiveness analysis. Actas Dermo-Sifiliograficas. 108 (10), 931-938 (2017).
  4. Voit, C., et al. Ultrasound morphology criteria predict metastatic disease of the sentinel nodes in patients with melanoma. Journal of Clinical Oncology. 28 (5), 847-852 (2010).
  5. Hayes, A. J., et al. Prospective cohort study of ultrasound surveillance of regional lymph nodes in patients with intermediate-risk cutaneous melanoma. British Journal of Surgery. 106 (6), 729-734 (2019).
  6. Ipenburg, N. A., Thompson, J. F., Uren, R. F., Chung, D., Nieweg, O. E. Focused ultrasound surveillance of lymph nodes following lymphoscintigraphy without sentinel node biopsy: a useful and safe strategy in elderly or frail melanoma patients. Annals of Surgical Oncology. 26 (9), 2855-2863 (2019).
  7. Jayapal, N., et al. Differentiation between benign and metastatic cervical lymph nodes using ultrasound. Journal of Pharmacy and Bioallied Sciences. 11, 338-346 (2019).
  8. Dankort, D., et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nature Genetics. 41 (5), 544-552 (2009).
  9. Damsky, W. E., et al. β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell. 20 (6), 741-754 (2011).
  10. Xie, X., Koh, J. Y., Price, S., White, E., Mehnert, J. M. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discovery. 5 (4), 410-423 (2015).
  11. Kohler, C., et al. Mouse cutaneous melanoma induced by mutant BRaf arises from expansion and dedifferentiation of mature pigmented melanocytes. Cell Stem Cell. 21 (5), 679-693 (2017).
  12. Yuan, P., et al. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proceedings of the National Academy of Sciences of the United States of America. 110 (45), 18226-18231 (2013).
  13. Marsh Durban, V., Deuker, M. M., Bosenberg, M. W., Phillips, W., McMahon, M. Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. Journal of Clinical Investigation. 123 (12), 5104-5118 (2013).
  14. Hooijkaas, A. I., Gadiot, J., vander Valk, M., Mooi, W. J., Blank, C. U. Targeting BRAFV600E in an inducible murine model of melanoma. American Journal of Pathology. 181 (3), 785-794 (2012).
  15. Steinberg, S. M., et al. BRAF inhibition alleviates immune suppression in murine autochthonous melanoma. Cancer Immunology Research. 2 (11), 1044-1050 (2014).
  16. Vitiello, M., et al. Antitumoral effects of attenuated Listeria monocytogenes in a genetically engineered mouse model of melanoma. Oncogene. 38 (19), 3756-3762 (2019).
  17. Moon, H., et al. Melanocyte stem cell activation and translocation initiate cutaneous melanoma in response to UV exposure. Cell Stem Cell. 21 (5), 665-678 (2017).
  18. Zhao, L., Zhan, Y. T., Rutkowski, J. L., Feuerstein, G. Z., Wang, X. K. Correlation between 2-and 3-dimensional assessment of tumor volume and vascular density by ultrasonography in a transgenic mouse model of mammary carcinoma. Journal of Ultrasound in Medicine. 29 (4), 587-595 (2010).
check_url/kr/62527?article_type=t

Play Video

Cite This Article
Vitiello, M., Kusmic, C., Faita, F., Poliseno, L. Analysis of Lymph Node Volume by Ultra-High-Frequency Ultrasound Imaging in the Braf/Pten Genetically Engineered Mouse Model of Melanoma. J. Vis. Exp. (175), e62527, doi:10.3791/62527 (2021).

View Video