Summary

使用成熟的人诱导多能干细胞来源心肌细胞单层进行高通量心脏毒性筛选

Published: March 24, 2023
doi:

Summary

人诱导多能干细胞来源的心肌细胞(hiPSC-CMs)为使用动物进行临床前心脏毒性筛查提供了一种替代方案。hiPSC-CMs在临床前毒性筛查中广泛采用的一个限制是细胞的不成熟,胎儿样表型。这里介绍的是用于hiPSC-CMs稳健和快速成熟的方案。

Abstract

人诱导干细胞来源的心肌细胞(hiPSC-CMs)用于替代和减少对动物和动物细胞的依赖,以进行临床前心脏毒性测试。在二维单层形式中,hiPSC-CMs概括了在最佳细胞外基质(ECM)上培养的成人心肌细胞的结构和功能。人围产期干细胞衍生的ECM(成熟诱导细胞外基质-MECM)在铺板后7天内使hiPSC-CM结构、功能和代谢状态成熟。

成熟的hiPSC-CM单层对临床相关药物也有预期的反应,已知有引起心律失常和心脏毒性的风险。到目前为止,hiPSC-CM单层的成熟是这些有价值的细胞广泛用于监管科学和安全筛选的障碍。本文介绍了用于hiPSC-CM电生理和收缩功能的电镀、成熟和高通量功能表型的验证方法。这些方法适用于市售纯化的心肌细胞,以及使用高效的腔室特异性分化方案在内部生成的干细胞来源的心肌细胞。

使用电压敏感染料 (VSD;发射波长:488 nm)、钙敏感荧光团 (CSF) 或基因编码钙传感器 (GCaMP6) 测量高通量电生理功能。高通量光学映射设备用于每个功能参数的光学记录,并使用定制的专用软件进行电生理数据分析。MECM方案用于使用正性肌力药物(异丙肾上腺素)和人乙醚相关基因(hERG)通道特异性阻断剂进行药物筛查。这些资源将使其他研究人员能够成功地利用成熟的hiPSC-CMs进行高通量,临床前心脏毒性筛查,心脏药物疗效测试和心血管研究。

Introduction

人诱导多能干细胞来源的心肌细胞(hiPSC-CMs)已在国际范围内得到验证,可用于体外心脏毒性筛查1。高纯度的hiPSC-CMs可以产生几乎无限的数量,冷冻保存和解冻。重新镀层后,它们也会复活并开始以让人联想到人类心脏的节奏收缩23。值得注意的是,单个hiPSC-CMs相互偶联并形成功能性合胞体,作为单个组织跳动。如今,hiPSCs通常来自患者的血液样本,因此任何人都可以使用体外hiPSC-CM心脏毒性筛查测定45来代表。这为进行“培养皿中的临床试验”创造了机会,来自不同人群的重要代表性6.

与现有的动物和动物细胞心脏毒性筛选方法相比,一个关键优势是hiPSC-CMs利用完整的人类基因组,并提供与人类心脏具有遗传相似性的体外系统。这对于药物基因组学和个性化医疗特别有吸引力 – 使用hiPSC-CMs进行药物和其他治疗开发预计将提供更准确,精确和安全的药物处方。事实上,二维(2D)hiPSC-CM单层测定已被证明可以预测药物的心脏毒性,使用一组临床使用的药物,已知有引起心律失常的风险1,789尽管hiPSC-CMs具有巨大的潜力,并且有望简化和降低药物开发成本,但人们一直不愿意使用这些新型检测方法101112

到目前为止,广泛采用和接受hiPSC-CM筛查测定的一个主要限制是它们不成熟的胎儿外观以及它们的功能。hiPSC-CM成熟的关键问题已经在科学文献中进行了回顾和辩论,并进行了恶心1314,1516同样,已经采用了许多方法来促进hiPSC-CM成熟,包括2D单层中的细胞外基质(ECM)操作和3D工程心脏组织(EHT)的开发1718。目前,人们普遍认为,相对于基于2D单层的方法,使用3D EHT将提供更高的成熟度。然而,与 3D EHT 相比,2D 单层提供了更高的细胞利用效率,并提高了电镀成功率;3D EHT利用更多的细胞,并且通常需要包含可能混淆结果的其他细胞类型。因此,在本文中,重点是使用一种简单的方法来成熟培养为电和机械耦合细胞的2D单层的hiPSC-CMs。

先进的hiPSC-CM成熟可以使用ECM在2D单层中实现。hiPSC-CMs的2D单层可以使用柔软,灵活的聚二甲基硅氧烷盖玻片成熟,该盖玻片涂有由Engelbreth-Holm-Swarm小鼠肉瘤细胞(小鼠ECM)分泌的基底膜基质。2016年,报告显示,在这种软ECM条件下培养的hiPSC-CMs在功能上成熟,显示出接近成人心脏值(~50 cm / s)的动作电位传导速度18。此外,这些成熟的hiPSC-CMs显示出许多其他让人联想到成人心脏的电生理特征,包括超极化静息膜电位和K ir2.1的表达。最近,报告发现了一种人类围产期干细胞衍生的ECM涂层,可促进2D hiPSC-CMs19的结构成熟。在这里,提出了结构成熟的2D hiPSC-CM单层的易于使用的方法,用于高通量电生理筛选。此外,我们还使用电压敏感染料(VSD)和钙敏感探针和蛋白质,提供用于自动采集和分析2D hiPSC-CM单层电生理功能的光学映射仪器的验证。

Protocol

该协议中的hiPSC使用已获得密歇根大学HPSCO委员会(人类多能干细胞监督委员会)的批准。有关材料和设备的列表,请参阅 材料表 。有关培养基及其组成,请参见 表1 。 1. 解冻和接种市售冷冻保存的 hiPSC-CM,以便在诱导成熟的细胞外基质 (MECM) 上成熟 将所有试剂加热至室温,并在心肌细胞接种前用含有钙和镁的Hank平衡盐溶液?…

Representative Results

以相衬和免疫荧光共聚焦成像为特征的hiPSC-CM成熟使用MECM包被的96孔板对市售hiPSC-CMs进行ECM介导的成熟时间表如图 1A所示。这些数据是使用市售的心肌细胞收集的,这些心肌细胞作为冷冻保存的细胞瓶到达实验室。每个小瓶含有>5×106 活心肌细胞。细胞纯度为~98%,并经过严格的质量控制测试(每个小瓶均提供分析证书)。大量的CM能够使用同一批次的?…

Discussion

有几种不同的方法可以使用hiPSC-CMs进行 体外 心脏毒性筛查。最近一篇关于使用 hiPSC-CMs 的“最佳实践”论文介绍了各种 体外 测定、其主要读数,以及重要的是,每种测定的粒度以量化人类心脏电生理功能20。除了使用穿膜电极外,VSDs还提供了人类心脏电生理功能的最直接测量。 VSD检测读数能够直接可视化和量化关键电生理参数,包括动作电位持续时间、动作电位…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH拨款HL148068-04和R44ES027703-02(TJH)的支持。

Materials

0.25% Trypsin EDTA Gibco 25200-056
0.5 mg/mL BSA (7.5 µmol/L) Millipore Sigma A3294
2.9788 g/500 mL HEPES (25 mmol/L) Millipore Sigma H4034
AdGCaMP6m Vector biolabs 1909
Albumin human Sigma A9731-1G
alpha actinin antibody ThermoFisher MA1-22863
B27 Gibco 17504-044
Blebbistatin Sigma B0560
CalBryte 520AM AAT Bioquest 20650
CELLvo MatrixPlus 96wp StemBiosys N/A https://www.stembiosys.com/products/cellvo-matrix-plus
CHIR99021 LC Laboratories c-6556
Clear Assay medium (fluorobrite) ThermoFisher A1896701 For adenovirus transduction
DAPI ThermoFisher 62248
DMEM:F12 Gibco 11330-032
FBS (Fetal Bovine Serum) Sigma F4135-500ML
FluoVolt ThermoFisher F10488
HBSS Gibco 14025-092
iCell CM maintenance media FUJIFILM/Cellular Dynamics M1003
iCell2 CMs FUJIFILM 1434
Incucyte Zoom  Sartorius
iPS DF19-9-11T.H WiCell
Isoproterenol MilliporeSigma CAS-51-30-9
IWP4 Tocris 5214
L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate Sigma A8960-5g
L-glutamine Gibco A2916801
LS columns Miltenyii Biotec 130-042-401
MACS Buffer (autoMACS Running Buffer) Miltenyii Biotec 130-091-221
Matrigel Corning 354234
MitoTracker Red ThermoFisher M7512
Nautilus HTS Optical Mapping  CuriBio https://www.curibio.com/products-overview
Nikon A1R Confocal Microscope Nikon
nonessential amino acids Gibco 11140-050
pre-separation filter Miltenyii Biotec 130-041-407
PSC-Derived Cardiomyocyte Isolation Kit, human Miltenyii Biotec 130-110-188
Pulse CuriBio https://www.curibio.com/products-overview
Quadro MACS separator (Magnet) Miltenyii Biotec 130-091-051
Retinoic acid Sigma R2625
RPMI 1640  Gibco 11875-093
RPMI 1640 (+HEPES, +L-Glutamine) Gibco 22400-089
StemMACS iPS-Brew XF Miltenyii Biotec 130-107-086
TnI antibody (pan TnI) Millipore Sigma MAB1691 
Versene (ethylenediaminetetraacetic acid – EDTA solution) Gibco 15040-066
Y-27632 dihydrochloride Tocris 1254
β-mercaptoethanol Gibco 21985023

References

  1. Blinova, K., et al. International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Reports. 24 (13), 3582-3592 (2018).
  2. Ma, J., et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. American Journal of Physiology. Heart and Circulatory Physiology. 301 (5), 2006-2017 (2011).
  3. Lee, P., et al. Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circulation Research. 110 (12), 1556-1563 (2012).
  4. Fermini, B., Coyne, S. T., Coyne, K. P. Clinical trials in a dish: a perspective on the coming revolution in drug development. SLAS Discovery. 23 (8), 765-776 (2018).
  5. Strauss, D. G., Blinova, K. Clinical trials in a dish. Trends in Pharmacological Sciences. 38 (1), 4-7 (2017).
  6. Blinova, K., et al. Clinical trial in a dish: personalized stem cell-derived cardiomyocyte assay compared with clinical trial results for two QT-prolonging drugs. Clinical and Translational Science. 12 (6), 687-697 (2019).
  7. Blinova, ., et al. Comprehensive translational assessment of human-induced pluripotent stem cell derived cardiomyocytes for evaluating drug-induced arrhythmias. Toxicological Sciences. 155 (1), 234-247 (2017).
  8. da Rocha, A. M., et al. hiPSC-CM monolayer maturation state determines drug responsiveness in high throughput pro-arrhythmia screen. Scientific Reports. 7 (1), 13834 (2017).
  9. da Rocha, A. M., Creech, J., Thonn, E., Mironov, S., Herron, T. J. Detection of drug-induced Torsades de Pointes arrhythmia mechanisms using hiPSC-CM syncytial monolayers in a high-throughput screening voltage sensitive dye assay. Toxicological Sciences. 173 (2), 402-415 (2020).
  10. Knollmann, B. C. Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model. Circulation Research. 112 (6), 969-976 (2013).
  11. Lam, C. K., Wu, J. C. Disease modelling and drug discovery for hypertrophic cardiomyopathy using pluripotent stem cells: how far have we come. European Heart Journal. 39 (43), 3893-3895 (2018).
  12. Jiang, Y., Park, P., Hong, S. M., Ban, K. Maturation of cardiomyocytes derived from human pluripotent stem cells: current strategies and limitations. Molecules and Cells. 41 (7), 613-621 (2018).
  13. Ahmed, R. E., Anzai, T., Chanthra, N., Uosaki, H. A brief review of current maturation methods for human induced pluripotent stem cells-derived cardiomyocytes. Frontiers in Cell and Developmental Biology. 8, 178 (2020).
  14. Guo, Y., Pu, W. T. Cardiomyocyte maturation: new phase in development. Circulation Research. 126 (8), 1086-1106 (2020).
  15. Yang, X., Pabon, L., Murry, C. E. Engineering adolescence:maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation Research. 114 (3), 511-523 (2014).
  16. Karbassi, E., et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nature Reviews Cardiology. 17 (6), 341-359 (2020).
  17. Nunes, S. S., et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nature Methods. 10 (8), 781-787 (2013).
  18. Herron, T. J., et al. Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circulation. Arrhythmia and Electrophysiology. 9 (4), 003638 (2016).
  19. Block, T., et al. Human perinatal stem cell derived extracellular matrix enables rapid maturation of hiPSC-CM structural and functional phenotypes. Scientific Reports. 10 (1), 19071 (2020).
  20. Gintant, G., et al. Repolarization studies using human stem cell-derived cardiomyocytes: Validation studies and best practice recommendations. Regulatory Toxicology and Pharmacology. 117, 104756 (2020).
  21. Cyganek, L., et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight. 3 (12), 99941 (2018).
  22. Tohyama, S., et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 12 (1), 127-137 (2013).
  23. Davis, J., et al. In vitro model of ischemic heart failure using human induced pluripotent stem cell-derived cardiomyocytes. JCI Insight. 6 (10), 134368 (2021).
  24. Diaz, R. J., Wilson, G. J. Studying ischemic preconditioning in isolated cardiomyocyte models. Cardiovascular Research. 70 (2), 286-296 (2006).
check_url/kr/64364?article_type=t

Play Video

Cite This Article
Monteiro da Rocha, A., Allan, A., Block, T., Creech, J., Herron, T. J. High-Throughput Cardiotoxicity Screening Using Mature Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Monolayers. J. Vis. Exp. (193), e64364, doi:10.3791/64364 (2023).

View Video