Summary

使用创新的无异种方法进行人类治疗,分离和培养人脂肪来源的干细胞

Published: February 03, 2023
doi:

Summary

在细胞疗法制备/操作步骤中引入的异源性(化学或动物源性)产品与宿主患者免疫反应性和致病性传播的风险增加有关。这里描述了一种完整的无异种方法,用于分离和 体外 扩增人脂肪来源的干细胞。

Abstract

考虑到干细胞疗法的影响越来越大,由于在 体外 操作期间引入动物源性产品,人们对潜在的污染或感染传播提出了生物安全问题。在细胞分离和扩增步骤中常用的异种成分,如胶原酶或胎牛血清,可能与接受患者的免疫反应性或病毒、细菌和朊病毒感染的潜在风险有关。遵循良好生产规范指南,应避免化学组织解离,而胎牛血清(FBS)可以用无异种补充剂代替。此外,为了确保细胞产品的安全性,定义更可靠和可重复的方法非常重要。与胶原酶FBS培养的标准方案相比,我们开发了一种创新的,完全无异种的方法,用于分离和体 扩增人脂肪来源的干细胞,而不会改变其特性。在这里,从腹部脂肪组织中分离出人脂肪来源的干细胞(hASCs)。用剪刀/手术刀机械切碎样品,显微解剖并机械分散在10cm培养皿中,并用手术刀切口制备,以促进组织碎片的附着和hASC的迁移。在洗涤步骤之后,选择hASCs,因为它们具有塑料粘附性,无需酶消化。分离的hASC用补充有5%无肝素的人血小板裂解物的培养基培养,并与无动物胰蛋白酶替代品分离。按照良好生产规范(GMP)关于生产用于人类治疗的细胞产品的指示,在任何培养基中均未使用抗生素。

Introduction

在过去的几十年中,对创新治疗的需求不断增加,这引起了转化医学领域的重大努力和资源投资1。基于细胞的产品与细胞来源、制造过程(分离、扩增或基因修饰)和非细胞补充剂(酶、生长因子、培养补充剂和抗生素)确定的风险相关,这些风险因素取决于具体的治疗适应症。最终产品的质量、安全性和有效性可能受到上述要素的深刻影响2.干细胞疗法需要遵守生物安全原则;细胞培养中动物源性产品致病传播的潜在风险可能存在问题,对制造过程中引入的任何产品进行彻底测试至关重要3.

分离人脂肪来源干细胞(hASCs)的传统方法包括用胶原酶进行酶消化,然后通过离心4进行洗涤步骤。虽然酶分离通常被认为在细胞产量和活力方面比其他机械技术更有效,但所使用的动物源性成分,如胶原酶,被美国食品和药物管理局认为不仅仅是最低限度的操纵。这意味着免疫反应或疾病传播的风险显着增加,从而限制了hASC治疗在临床环境中的转化56

基于胰蛋白酶的消化是另一种分离ASC的酶方案。已经描述了不同的技术,在胰蛋白酶浓度、离心速度和孵育时间方面略有修改。不幸的是,这种方法没有得到很好的描述,并且文献中缺乏比较,特别是与机械隔离方案7的比较。然而,就该方法的可翻译性而言,胰蛋白酶具有与胶原酶相同的缺点。

基于机械力且不添加酶的替代分离方法涉及脂肪组织碎片的高速离心(800 x g 或 1,280 x g,15 分钟)。然后,将沉淀与红细胞裂解缓冲液孵育(5分钟),然后在培养基中重悬之前以600×g进行另一个离心步骤。尽管与外植体方法相比,在第一天分离的细胞数量更多,但之前的一项研究表明,在培养8的第二周之后,增殖较低或不存在。

除此之外,使用异源添加培养基(例如用作细胞培养的生长因子补充剂的胎牛血清(FBS))的进一步操作与宿主患者的免疫反应性和暴露于病毒,细菌或朊病毒感染的风险增加有关910。免疫反应和荨麻疹样皮疹的发展已经在接受用FBS11产生的几剂量间充质干细胞的个体中描述过。此外,FBS会受到批次间差异的影响,这可能会影响最终产品质量12

根据良好生产规范 (GMP) 指南,应避免酶促组织解离,并应用无异基因补充剂替代 FBS。这些步骤以及更可靠和可重复的方案对于支持细胞疗法的应用至关重要313

在这种情况下,人血小板裂解物(hPL)已被建议作为FBS的替代品,因为它是一种无细胞,含蛋白质,富含生长因子的补充剂,并且较早在临床级基于细胞的产品中引入,作为 体外 细胞培养和扩增的生长培养基的添加剂1415。由于hPL是一种人源性产品,因此在用于临床应用的hASC的 体外 培养过程中,它经常被用作FBS的替代品,从而减少了与FBS可翻译性相关的免疫反应和感染问题1516

尽管生产成本较高,但已经证明,与FBS相比,hPL支持许多细胞类型的细胞活力,增加增殖,延缓衰老,确保基因组稳定性,即使在晚期细胞传代中也能保存细胞免疫表型;所有这些要素都支持向这种文化补充11的转变。

这项工作的目的是开发一种标准化方案,以使用完整的无动物方法分离和培养hASC,与经典FBS培养的hASC相比,无需改变细胞生理学和干性特性(图1)。

Protocol

hASCs是从一名健康女性的腹部脂肪组织中分离出来的,该女性在瑞士洛桑CHUV洛桑大学医院使用腹部自体皮瓣(深下上腹部穿支肌皮瓣,[DIEP])进行了乳房重建。皮瓣的废弃部分和脂肪组织是在患者签署知情同意书后获得的。根据《赫尔辛基宣言》,所有协议均由医院的生物银行部门DAL(编号314 GGC)和伦理委员会审查和批准。 注意:所有步骤必须在层流罩下和无菌条件下进行?…

Representative Results

应用上述分离方法,在不使用胶原酶的情况下,成功地从腹部脂肪组织样品中获得hASC。此外,hASCs在完全无异种条件下在hPL存在下扩增,并且没有任何其他动物来源的成分。以下结果支持该协议,并且是从与hPL并行培养的hASC和以FBS作为对照条件中获得的。 在最初的簇出现后,hASC显示出经典的纺锤状形状,并且与存在FBS的对照细胞相比更小,更细长(图3</strong…

Discussion

脂肪来源的干细胞因其丰富、快速且经济实惠的分离方法、高体外/体内增殖率和干性/分化特性而在过去十年中引起了转化研究的兴趣181920因此,hASCs被认为是再生医学中基于细胞的策略的绝佳候选者21。从脂肪组织中分离后,hASC需要在体外扩增,并且在某些情况下,在用于特定治?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者没有承认。

Materials

15 mL tubes euroclone et5015b
anti-CD105 BD Biosciences BD560839
anti-CD34 BD Biosciences BD555821
anti-CD45 BD Biosciences BD555482
anti-CD73 BD Biosciences BD561254
autoMACS Rinsing Solution (FACS buffer) Miltenyi 130-091-222
BD Accuri C6 apparatus (flow cytometry instrument) BD accuri
Burker chamber Blaubrand 717810
Cell freezing container corning CLS432002
CellTiter 96 AQueous One Solution Cell Proliferation Assay Promega G3582
CoolCell Freezing container Corning CLS432002
Cryovials clearline 390701
Dimethyl sulfide Sigma Aldrich D2650-100mL
disposabile blade scalpel paragon bs 2982
Dulbecco's Modified Eagle's Medium – high glucose GIBCO 11965092
Human Platelet Lysate FD (GMP grade) Stemulate PL-NH-500
Infinite F50 spectrophotometer Tecan
Optical microscope with 4x and 10x magnification objectives Olympus CKX41
Petri dish 10 cm Greiner bio-one 664160
Sterile scalpels Reda 07104-00
Sterile scissors Bochem 4071
Sterile tweezers Bochem 1152
Swinging bucket centrifuge Sigma 3-16K
T25 flasks Greiner bio-one 6910170
TrypLe (animal free trypsin substitute) GIBCO 12604-013

References

  1. Naderi, N., et al. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. International Wound Journal. 14 (1), 112-124 (2017).
  2. Guiotto, M., Riehle, M. O., Raffoul, W., Hart, A., di Summa, P. G. Is human platelet lysate (hPL) the ideal candidate to substitute the foetal bovine serum for cell-therapy translational research. Journal of Translational Medicine. 19 (1), 426 (2021).
  3. Condé-Green, A., et al. Shift toward mechanical isolation of adipose-derived stromal vascular fraction: Review of upcoming techniques. Plastic and Reconstructive Surgery. Global Open. 4 (9), 1017 (2016).
  4. Zuk, P. A., et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering. 7 (2), 211-228 (2001).
  5. Chang, H., et al. Safety of adipose-derived stem cells and collagenase in fat tissue preparation. Aesthetic Plastic Surgery. 37 (4), 802-808 (2013).
  6. Spees, J. L., et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Molecular Therapy. 9 (5), 747-756 (2004).
  7. Fadel, L., et al. Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep. Acta Cirurgica Brasileria. 26 (4), 267-273 (2011).
  8. Markarian, C. F., et al. Isolation of adipose-derived stem cells: A comparison among different methods. Biotechnology Letters. 36 (4), 693-702 (2014).
  9. Sherman, L. S., Condé-Green, A., Naaldijk, Y., Lee, E. S., Rameshwar, P. An enzyme-free method for isolation and expansion of human adipose-derived mesenchymal stem cells. Journal of Visualized Experiments. (154), e59419 (2019).
  10. Lalu, M. M., et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials. PLoS One. 7 (10), 47559 (2012).
  11. Escobar, C. H., Chaparro, O. Xeno-free extraction, culture, and cryopreservation of human adipose-derived mesenchymal stem cells. Stem Cells Translational Medicine. 5 (3), 358-365 (2016).
  12. Vaidya, V., et al. Ultraviolet-C irradiation for inactivation of viruses in foetal bovine serum. Vaccine. 36 (29), 4215-4221 (2018).
  13. Kyllönen, L., et al. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro. Stem Cell Research & Therapy. 4 (1), 17 (2013).
  14. Schallmoser, K., Henschler, R., Gabriel, C., Koh, M. B. C., Burnouf, T. Production and quality requirements of human platelet lysate: A position statement from the Working Party on Cellular Therapies of the International Society of Blood Transfusion. Trends in Biotechnology. 38 (1), 13-23 (2020).
  15. Guiotto, M., Raffoul, W., Hart, A. M., Riehle, M. O., di Summa, P. G. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: A systematic review. Journal of Translational Medicine. 18 (1), 351 (2020).
  16. Guiotto, M., Raffoul, W., Hart, A. M., Riehle, M. O., di Summa, P. G. Human platelet lysate acts synergistically with laminin to improve the neurotrophic effect of human adipose-derived stem cells on primary neurons. Frontiers in Bioengineering and Biotechnology. 9, 658176 (2021).
  17. Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8 (4), 315-317 (2006).
  18. Cowper, M., et al. Human platelet lysate as a functional substitute for fetal bovine serum in the culture of human adipose derived stromal/stem cells. Cells. 8 (7), 724 (2019).
  19. Kim, N., et al. Mesenchymal stem cells for the treatment and prevention of graft-versus-host disease: Experiments and practice. Annals of Hematology. 92 (10), 1295-1308 (2013).
  20. Palombella, S., et al. Effects of metal micro and nano-particles on hASCs: An in vitro model. Nanomaterials. 7 (8), 212 (2017).
  21. Han, S., Sun, H. M., Hwang, K. C., Kim, S. W. Adipose-derived stromal vascular fraction cells: Update on clinical utility and efficacy. Critical Reviews in Eukaryotic Gene Expression. 25 (2), 145-152 (2015).
  22. Sotiropoulou, P. A., Perez, S. A., Salagianni, M., Baxevanis, C. N., Papamichail, M. Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells. 24 (5), 1409-1410 (2006).
  23. Perez-Ilzarbe, M., et al. Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy. Transfusion. 49 (9), 1901-1910 (2009).
  24. Tsuji, K., et al. Effects of different cell-detaching methods on the viability and cell surface antigen expression of synovial mesenchymal stem cells. Cell Transplantation. 26 (6), 1089-1102 (2017).
  25. Shah, F. S., Wu, X., Dietrich, M., Rood, J., Gimble, J. M. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy. 15 (8), 979-985 (2013).
  26. Becherucci, V., et al. Human platelet lysate in mesenchymal stromal cell expansion according to a GMP grade protocol: A cell factory experience. Stem Cell Research & Therapy. 9 (1), 124 (2018).
  27. Blande, I. S., et al. Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate. Transfusion. 49 (12), 2680-2685 (2009).
  28. Castegnaro, S., et al. Effect of platelet lysate on the functional and molecular characteristics of mesenchymal stem cells isolated from adipose tissue. Current Stem Cell Research & Therapy. 6 (2), 105-114 (2011).
  29. Palombella, S., et al. Systematic review and meta-analysis on the use of human platelet lysate for mesenchymal stem cell cultures: Comparison with fetal bovine serum and considerations on the production protocol. Stem Cell Research & Therapy. 13 (1), 142 (2022).
  30. Palombella, S., et al. Human platelet lysate as a potential clinical-translatable supplement to support the neurotrophic properties of human adipose-derived stem cells. Stem Cell Research & Therapy. 11 (1), 432 (2020).
  31. Krähenbühl, S. M., Grognuz, A., Michetti, M., Raffoul, W., Applegate, L. A. Enhancement of human adipose-derived stem cell expansion and stability for clinical use. International Journal of Stem Cell Research & Therapy. 2 (1), 007 (2015).
check_url/kr/65104?article_type=t

Play Video

Cite This Article
Guiotto, M., Palombella, S., Brambilla, S., Applegate, L. A., Riehle, M., Hart, A., Raffoul, W., di Summa, P. G. Isolation and Culture of Human Adipose-Derived Stem Cells With an Innovative Xenogeneic-Free Method for Human Therapy. J. Vis. Exp. (192), e65104, doi:10.3791/65104 (2023).

View Video