Summary

超声造影有针对性的治疗胶质瘤的小鼠通过药物轴承纳米粒子交付和微血管消融

Published: December 15, 2010
doi:

Summary

微泡Insonation是很有前途的战略肿瘤消融时间平均减少声学权力,以及为靶向给药疗法。本研究的目的是开发低占空比超声脉冲战略和nanocarriers最大限度地发挥非热微血管消融和有效载荷运送到皮下C6脑胶质瘤。

Abstract

我们正在开发的微创造影剂微泡造影剂的基础微血管的通透性和/或消融是由不同的超声脉冲参数控制的治疗方法。具体来说,我们正在测试这种办法是否可用于药物输送和微血管消融治疗恶性脑肿瘤。已经进行初步研究,以确定是否有针对性的药物轴承纳米粒子交付,可以通过100nm的聚(乳酸 – 乙醇酸)(PLAGA)坚持白蛋白炮轰微泡的纳米粒子组成的“复合”投递代理的超声导破坏促进。我们这些代理商表示微气泡纳米粒子复合代理人(MNCAs)。当与超声定位皮下C6脑胶质瘤,我们观察到纳米粒子交付立即与与纳米粒子和8.5倍的增长比非治疗肿瘤共同管理的微泡治疗肿瘤在MNCA治疗肿瘤中增加了4.6倍。此外,在许多癌症的应用,我们认为它可能是可取的执行结合消融肿瘤微循环,这将导致肿瘤的缺氧和凋亡的靶向给药的。为此,我们已经测试非theramal气蚀引起的微血管消融的疗效,表明这种方法引出肿瘤灌注减少,细胞凋亡,显着的生长抑制作用,并坏死。两者合计,这些结果表明,超声定位的方法有可能增加肿瘤坏死创建通过微血管的消融和/或同时提高药物的有效载荷在胶质瘤治疗的效率。

Protocol

1。微泡生产为了准备白蛋白微泡(MBS),放置在一个烧瓶血清白蛋白的1%溶液与水相中的气毯以上(octafluoropropane)生理盐水。简言之超声配备一个扩展½“钛探头超声粉碎机(30秒)的解决方案,这一提法是Optison(GE Heathcare),这是在0.5 – 1.2 × 10 9 MBS /毫升的浓度范围内提供类似。确定平均MB与Multisizer库尔特计数器直径白蛋白MB的直径平均在这项研究中使用了1.93um ± 1.63um。 <…

Discussion

关键步骤

小鼠尾静脉插管的:

静脉注射入小鼠尾静脉,可以是一个具有挑战性的的过程。然而,尾静脉导管,可以大大提高了一个成功注入的可能性。为了使导管,来回反复弯曲25号针头,直到它打破从枢纽。钝端插入体育20月底油管和密封胶与硅的连接。要准备的导管插管,将装有1%肝素生理盐水的凯瑟注射器和液体的死腔的导管注入。尾静脉麻醉鼠标在?…

Declarações

The authors have nothing to disclose.

Acknowledgements

由美国国立卫生研究院R01 HL74082,哈特韦尔基金会,聚焦超声手术基金会支持。

Materials

Material Name Tipo Company Catalogue Number Comment
ApoptTag kit   Intergen Co. S7110  
un-capped 85:15 poly(lactic-co-glycolic acid) (PLAGA)   Lakeshore Biomaterials Custom  
Vivo Tag 680   VisEn Medical 10120 Used to Tag BSA
Poly(vinyl alcohol)   Sigma-Aldrich 363136  
MicroTip Sonicator   Misonix S-4000  
Sequoia   Simons Medical P.O.A Equipped with CPS
FreeZone 2.5   Labconco 7670020 Equipped with Nitrogen Trap
Methylene chloride (CH2Cl2)   Fisher Scientific D37-500  
FMT 250   VisEn Medical P.O.A  
F-12K Nutrient Mixture   Gibco 21127-022  
polyethyleneglycol-40 stearate   Sigma Chemical 9004-99-3  
distearoyl phosphatidylcholine   Avanti Polar Lipids 770365  
Multisizer Coulter Counter   Beckman Coulter P.O.A  
Waveform Generator   Tektronix, Inc. AFG-310  
water-based ultrasound gel   Parker Laboratories Aquasonic 100  
Infusion pump   Harvard Apparatus Harvard Apparatus PHD 2000  
1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)   Pierce Biotechnology 25952-53-8  
N-hydroxysulfosuccinimide (Sulfo-NHS)   Pierce Biotechnology 106627-54-7  
Succinic anhydride   Sigma Aldrich 603902  
Power Amplifier   Electronic Navigation Industries ENI 3100LA  
Needle Thermocouple Probe   Omega HYP1-30-1/2-T-G-60-SMPW-M  
BioGel (P100, medium)   Bio-Rad 150-4170  
.75’’ diameter 1 MHz unfocused transducer   Panametrics A314S  

Referências

  1. Chappell, J., Song, J., Burke, C., Klibanov, A., Price, R. Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. Small. 10, 1769-1777 (2008).
  2. Chomas, J. E., Pollard, R., Wisner, E., Ferrara, K. Subharmonic Phase-Inversion for Tumor Perfusion Estimation. IEEE. 2, 1713-1716 (2001).
  3. Davda, J., Labhasetwar, V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm. 233, 51-51 (2002).
  4. Hynynen, K., McDannolod, N. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 220, 640-646 (2001).
  5. McDannold, N., Vykhodtseva, N., Hynynen, K. Microbubble contrast agent with focused ultrasound to create brain lesions at low power levesl: MR imaging and histological study in rabbits. Radiology. 241, 95-106 .
  6. McDannold, N., Vykhodtseva, N., Hynynen, K. Targeted disruption of the blood-brain barrier with focused ultrasound: Association with cavitation activity. Phys Med Biol. 51, 793-807 .
  7. McDannold, N., Clement, G. T., Black, P., Jolesz, F., Hynynen, K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery. 66, 323-332 (2009).
  8. Meairs, S., Alonso, A. Ultrasound microbubblesand the blood brain barrier. Progr Biophys Mol Biol. 93, 354-362 (2007).
  9. . . Optison, products insert. , (2009).
  10. Sadlowskie, A., Chromas, J., Pollard, R., Bloch, S., Griffey, S., Wisner, W., Ferrara, K. W. Mean Flow Rate and Intergrated Perfusion Estimates Obtained with Contrast-Assisted Ultrasound. IEEE Ultrasonics Symposium. , 1977-1980 (2002).
  11. Song, J., Chappell, J. C., Qi, M., VanGieson, E. J., Kaul, S., Price, R. J. Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. J Am Coll. Cardiol. 39, 726-731 (2002).
  12. Sheikov, N., McDannold, N., Vykhodtseva, N., Jolesz, F., Hynynen, K. Cellular mechanisms of blood-brain barrier opeing induced by ultrasound in the presences of microbubbles. Ultrasound Med. Biol. 30, 979-989 (2004).
  13. Tanter, J., Fink, M. Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull. J Acoust Soc Am. 103, 2403-2410 (1998).
  14. Yeh, C. K., Kruse, D. E., Lim, M. C., Redline, D. E., Ferrara, K. W. A New High Frequency Destruction/Reperfusion System. IEEE. 1, 433-436 (2003).
check_url/pt/2145?article_type=t

Play Video

Citar este artigo
Burke, C. W., Price, R. J. Contrast Ultrasound Targeted Treatment of Gliomas in Mice via Drug-Bearing Nanoparticle Delivery and Microvascular Ablation. J. Vis. Exp. (46), e2145, doi:10.3791/2145 (2010).

View Video