Summary

工程双层凝胶控制升序分化

Published: May 25, 2012
doi:

Summary

该协议着重于利用干细胞的固有能力,其周围的细胞外基质的线索,被诱导分化成多个表型。这种方法手稿延伸我们描述一个利用双层水凝胶的模型,PEG-纤维蛋白和胶原蛋白的组成和特性,同时脂肪干细胞分化<sup> 1</sup>。

Abstract

多年来的天然聚合物获得了更多,因为它们的宿主的生物相容性和交互能力与细胞在体外体内的重要性,认为在再生医学中的承诺的一个研究领域,是新型生物材料和干细胞的组合使用。在组织工程领域的一个基本战略是指导细胞的功能,使用三维支架(如脱细胞外基质,水凝胶,微/纳米颗粒)。这项技术已经从发现,细胞需要一个基板后,他们能够坚持,增殖,并表达他们分化 ​​的细胞表型和功能2-3。最近,它也已被确定,细胞不仅使用这些基板的坚持,但也互动,并采取从矩阵基板(例如,细胞外基质,细胞外基质的线索。因此,细胞和支架有一个相互连接,为控制组织发展,组织,和最终功能。脂肪干细胞(ASCs)是间质,非造血干细胞存在于脂肪组织,可以表现出多谱系分化的细胞现成的源(即前血管内皮细胞和周细胞)作为。我们的假设是,脂肪干细胞可以向简单的合作,培养他们的不同表型,同时在双层矩阵1。我们的实验室专注于皮肤伤口愈合。为此,我们建立了从天然生物材料的复合材料基体,纤维蛋白,胶原蛋白,壳聚糖,可以模仿特定皮肤伤口愈合的ECM环境的特点和功能。

Protocol

1。分离脂肪干细胞(ASCs)1,5 注:所有的程序,在室温下进行,除非另有说明。 分离大鼠肾周和附睾脂肪用无菌汉克的缓冲盐溶液,含1%胎牛血清(FBS),(5先前所描述的HBSS中)。这项研究已进行符合动物福利法“,实施动物福利条例,并按照实验动物护理和使用指南”的原则。 百果组织和转移到1-2克25毫升含有500克50毫升管?…

Discussion

ASCs的是众所周知的,他们易于隔离和向多种细胞类型分化的能力。在这个手稿中描述的技术,我们能够利用这些细胞暴露多个biomatrices同时ASCs的可塑性。细胞迁移远离他们的CSM基地,并进入其周围的细胞外环境,细胞采取从断头台上的提示,并可以保持“干细胞”(胶原蛋白),或向血管和血管支持细胞类型(纤维蛋白)被诱导分化。由于我们的实验室是在皮肤及软组织伤口愈合的兴趣,我们?…

Declarações

The authors have nothing to disclose.

Acknowledgements

支持博士后奖学金资助从匹兹堡组织工程​​倡议的SN。 DOZ的日内瓦基金会颁发的赠款支持。

Materials

Name of the reagent/equipment Company Catalogue number Comments
Hanks Balanced Salt Solution (HBSS) Gibco 14175 Consumable
Fetal Bovine Serum Hyclone SH30071.03 Consumable
Collagenase Type II Sigma-Aldrich C6685 Consumable
70-μm Nylon Mesh Filter BD Biosciences 352350 Consumable
100-μm Nylon Mesh Filter BD Biosciences 352360 Consumable
MesenPRO Growth Medium System Invitrogen 12746-012 Consumable
L-Glutamine Gibco 25030 Consumable
CaCl2.2H2O Sigma C8106 Consumable
T75 Tissue Culture Flask BD Biosciences 137787 Consumable
Chitosan Sigma-Aldrich 448869 Consumable
Acetic Acid Sigma-Aldrich 320099 Consumable
N-Octanol Acros Organics 150630025 Consumable
Sorbitan-Mono-Oleate Sigma-Aldrich S6760 Consumable
Potassium Hydroxide Sigma-Aldrich P1767 Consumable
Acetone Fisher Scientific L-4859 Consumable
Ethanol Sigma-Aldrich 270741 Consumable
Trinitro Benzenesulfonic Acid Sigma-Aldrich P2297 Consumable
Hydrochloric Acid Sigma-Aldrich 320331 Consumable
Ethyl Ether Sigma-Aldrich 472-484 Consumable
8-μm Tissue Culture Plate Inserts BD Biosciences 353097 Consumable
1.5-ml Microcentrifuge Tubes Fisher 05-408-129 Consumable
MTT Reagent Invitrogen M6494 Consumable
Dimethyl Sulfoxide Sigma-Aldrich D8779 Consumable
Qtracker Cell Labeling Kit(Q Tracker 655) Molecular probes Q2502PMP Consumable
Type 1 Collagen Travigen 3447-020-01 Consumable
Sodium Hydroxide Sigma-Aldrich S8045 Consumable
12-Well Tissue Culture Plates BD Biosciences 353043 Consumable
Fibrinogen Sigma F3879 Consumable
Thrombin Sigma T6884 Consumable
Benztriazole Derivative of Polyethylene Sunbio DE-034GS Consumable
Tris Buffer Tablet (pH 7.6) Sigma T5030 Consumable
Centrifuge Eppendorf 5417R Equipment
Orbital Shaker New Brunswick Scienctific C24 Equipment
Humidified Incubator with Air-5% CO2 Thermo Scientific Model 370 Equipment
Overhead Stirrer IKA Visc6000 Equipment
Magnetic Stirrer Corning PC-210 Equipment
Vacuum Desiccator Equipment
Particle Size Analyzer Malvern STP2000 Spraytec Equipment
Water Bath Fisher Scientific Isotemp210 Equipment
Spectrophotometer Beckman Beckman Coulter DU 800UV/Visible Spectrophotometer Equipment
Vortex Diagger 3030a Equipment
Microplate Reader Molecular Devices SpectraMax M2 Equipment
Light/Fluorescence Microscope Olympus IX71 Equipment
Confocal Microscope Olympus FV-500 Laser Scanning Confocal Microscope Equipment
Scanning Electron Microscope Carl Zeiss MicroImaging Leo 435 VP Equipment
Transmission Electron Microscope JEOL JEOL 1230 Equipment

Referências

  1. Natesan, S. A bilayer construct controls adipose-derived stem cell differentiation into endothelial cells and pericytes without growth factor stimulation. Tissue Eng. Part A. 17, 941-953 (2011).
  2. Nuttelman, C. R., Tripodi, M. C., Anseth, K. S. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol. 24, 208-218 (2005).
  3. Benoit, D. S. Integrin-linked kinase production prevents anoikis in human mesenchymal stem cells. J Biomed Mater Res A. 81, 259-268 (2007).
  4. Willerth, S. M., Sakiyama-Elbert, S. E. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. , (2008).
  5. Natesan, S. Adipose-derived stem cell delivery into collagen gels using chitosan microspheres. Tissue Eng. Part A. 16, 1369-1384 (2010).
  6. Bubnis, W. A., Ofner, M. C. The determination of epsilon-amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometric method using trinitrobenzenesulfonic acid. Anal. Biochem. 207, 129-133 (1992).
  7. Zhang, G. A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng. 12, 9-19 (2006).
  8. Bornstein, M. B. Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest. 7, 134-137 (1958).
  9. Zhang, G. Vascular differentiation of bone marrow stem cells is directed by a tunable three-dimensional matrix. Acta Biomater. 6, 3395-3403 (2010).
  10. Rochon, M. H. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries. Tissue Eng. Part A. 16, 1457-1468 (2010).
  11. Liu, H., Collins, S. F., Suggs, L. J. Three-dimensional culture for expansion and differentiation of mouse embryonic stem cells. Biomaterials. 27, 6004-6014 (2006).
check_url/pt/3953?article_type=t

Play Video

Citar este artigo
Natesan, S., Zamora, D. O., Suggs, L. J., Christy, R. J. Engineering a Bilayered Hydrogel to Control ASC Differentiation. J. Vis. Exp. (63), e3953, doi:10.3791/3953 (2012).

View Video