Summary

质谱选择离子软着陆准备好定义的表面原位二次离子质谱和红外光谱

Published: June 16, 2014
doi:

Summary

质量选择离子软着陆表面上是一个功能强大的方法对高度控制的新型材料的准备。再加上通过原位二次离子质谱(SIMS)和红外反射吸收光谱(IRRAS)分析,软着陆提供前所未有的见解的良好定义的物种与表面的相互作用。

Abstract

质量选择离子软着陆表面上是一个功能强大的方法对高度控制材料使用传统的合成技术是不可访问的准备。用二次离子质谱(SIMS)和红外反射吸收光谱(IRRAS)耦合软着陆原位表征使定义良好的表面分析清洁真空条件下进行。在我们的实验室制作了三个软着陆工具的功能是用于说明表面结合的有机金属化合物的代表制度编制的质量选择钌的三软着陆(联吡啶)二价阳离子,[茹(联吡啶)3] 2 +(联吡啶=联吡啶),到羧酸终止黄金(COOH-地空导弹自组装单层膜表面), 飞行时间的原位 (TOF)-SIMS提供了洞察软降落离子的反应性。此外,充电还原动力学,中和德吸附发生在COOH-SAM期间和离子软着陆使用原位傅立叶变换离子回旋共振(FT-ICR)-SIMS测量的研究后, 在原位 IRRAS实验提供深入了解的周围的金属中心的有机配位体的结构是通过COOH-SAM有机金属离子的固定面扰动通过软着陆。总的来说,三个工具提供关于支撑在表面良好定义的物种的化学成分,反应性和结构的互补信息。

Introduction

质量选择离子软着陆表面上仍然是目前的研究兴趣,由于技术的高度控制的新型材料1-6筹备证明能力的问题。最近作出的努力表示在筹备肽和蛋白质芯片的高通量生物筛选7,8,蛋白质分离和肽的构象富集9-12,共价连接使用大众选择的离子软着陆的潜在应用前景肽表面9,10,13,14,有机化合物的手性富集15,具体的氧化还原活性蛋白的电化学表征16-18,生产薄分子膜19,20中,大分子如石墨烯21和准备模型的处理通过离子簇22-39的软着陆催化剂体系,纳米粒子40-48和有机金属助mplexes到辅助材料19,49-56。通过多原子离子的软着陆修改曲面的概念于1977年57最初提出的厨师和同事,在随后的几年广泛的工具方法已被开发为大众选择的离子从天然气的沉积控制相表面上1,4,5。离子已经通过诸如电喷雾电离(ESI)10,58,59,基质辅助激光解吸/电离(MALDI)21,电子轰击电离(EI)60,61,脉冲电弧放电62,惰性气体冷凝36处理已产生,63,磁控溅射64,65,和激光汽化25,66,67。混合选择气相离子的前软着陆已经实现主要使用四极质量过滤器58,68,69,磁偏转装置70,和线性离子阱仪器8,59。特别诺塔在离子软着陆方法BLE提前最近发生的成功实施环境离子软,无功着陆由厨师和同事71,72。使用这些不同的离子化和大规模筛选技术,超高温(<100 eV)的多原子离子与表面的相互作用进行了研究,以便更好地了解影响离子软着陆的效率和反应性和非反应性散射的竞争过程的因素以及表面诱导解离4,73-75。

明确定义的模型催化剂用于研究目的的准备已经大量选择的离子25,34,35,56,76-81的软着陆的一个特别富有成果的应用。在纳米簇,其中的物理和化学特性并呈线性簇的大小不会缩放的尺寸范围,它已被证明,添加或删除单个原子或从集群可能会大大影响日EIR化学反应82-84。这种纳米级的现象,这是由于量子限域,被令人信服地证明了Heiz和同事85为模型催化剂组成的八金原子(金8)支持上的一个缺陷丰富的氧化镁表面柔软降落集群。几个额外的研究提供了支持表面34,77,86,87簇的大小依赖性反应性的证据。此外,高分辨电子显微镜图像表明,含少至10 88和55 89原子簇可能主要是负责支持氧化铁批量合成的金催化剂的优异活性。采用质量选择的离子软着陆,它可以制备大小选择的簇和纳米颗粒不扩散和凝聚成的支撑材料90-92的表面上较大结构的稳定阵列。这些先前的研究表明,与连续ING的发展,大众选择的簇和纳米粒子的软着陆可能成为一个多功能的技术创造了利用大量相同的集群和纳米粒子在表面上的扩展阵列的自发行为高度活跃的非均相催化剂。这些极其良好定义的系统可用于研究目的以了解关键参数,例如簇的大小,形态,元素组成和表面覆盖率影响催化剂的活性,选择性和耐久性。

通常使用在溶液相作为均相催化剂的有机金属配合物也可通过质量选择的离子56,80,81的软着陆被固定在表面上。附离子金属-配体配合物,以固体支持物,以产生杂化有机-无机复合材料是目前研究中的催化和表面科学界93的有源区。总的目标是获得高选择性朝向的同时促进从催化剂和留在溶液中的反应物更容易的分离的产物溶液相的金属 – 配体配合物的所需产物。在这种方式中,表面固定化的有机金属络合物收割均相和非均相催化剂的优点。通过选择一个适当的基片也能够维持甚至提高周围的活性金属中心的有机配位体的环境,同时也实现较强的表面固定94。自组装单分子膜表面(SAMs)的黄金可能被终止与许多不同的官能团的,因此,理想的系统研究,通过大量选择的离子95的软着陆圈养有机金属复合物表面的可行性。此外,电离等方法常压热解吸电离(APTDI)此前已证明,以产生气相混合金属的无机络合物这是不可访问的,通过在溶液中合成96。与此类似,例如磁控溅射法65,气体聚集63和激光蒸发66非热动力学上限定的合成和离子化技术也可以与离子软着陆仪表提供支撑在一个多功能路由到新的无机簇和纳米颗粒表面。

为了发展质量选择的离子软着陆成为一个成熟的技术,材料的制备,这是至关重要的信息分析方法,可以加上软着陆仪器之前来探测表面的化学和物理性质,期间和沉积后离子。迄今,大量的技术已被应用于此目的,包括二次离子质谱(SIMS)19,97-100,程序升温脱附和反应50,52,激光解吸电离101,脉冲分子束反应102,红外光谱(FTIR和Raman)98103104,表面增强拉曼光谱103,105,腔衰荡光谱106, X-射线光电子能谱35107,扫描隧道显微镜33,108-111,原子力显微镜112-114,和透射电子显微镜39。然而,为了最准确地描述制备或通过离子软着陆改性的表面,这是至关重要的,可以在原地无基材到环境中,在实验室的曝光进行的分析。 在原位进行的以前的分析提供了洞察如软降落离子的离子电荷随着时间的推移37,38,115,116的减少的现象,软解吸降落离子从表面52时,效率和动能的离子反应着陆14,81的依赖和大小的影响在集群和纳米颗粒沉积到的催化活性表面117。通过举例的方式,在我们的实验室,我们有系统地研究了不同地对空导弹3的表面质子化肽的电荷还原动力学。这些实验是用一种独特的软着陆仪耦合到执行的傅立叶变换离子回旋共振二次离子质谱仪(FT-ICR-SIMS),使表面的原位分析期间和离子97的软着陆之后。为了扩大在这些分析能力,其他金融工具构建,允许使用IRRAS 104面软降落离子的原位表征。这个表面敏感的红外技术使键的形成和破坏过程,以及在复 ​​合离子和表面层的构象变化进行实时期间和软着陆12后监测。例如,使用IRRAS它是表明,离子软着陆可用于共价固定化于N-羟基琥珀酰亚胺基酯的官能化自组装膜13,14大规模筛选多肽。

在此,我们说明了位于被用于原位 TOF-SIMS,FT-ICR-SIMS设计的太平洋西北国家实验室三个独特的定制工具的能力,并通过质量选择离子软着陆生产的基板的IRRAS分析到表面。作为一个代表性的系统,我们提出业绩质量选择的有机金属钌三(联吡啶)二价阳离子的软着陆[茹(联吡啶)3] 2 +到羧酸终止地对空导弹(COOH-SAMs)的制备固定化的有机金属配合物。它表明, 在原位 TOF-SIMS提供了非常高的灵敏度和大的整体的动态范围,帮助确定低丰度物种包括反应中间体的优点,可能仅被预发送的时间表面上短周期。 TOF-SIMS还提供了深入了解,从在气相之前,软着陆的有机金属离子除去的配体,影响其朝向固定化在表面上的效率和对气体分子的化学反应性。采用原位 FT-ICR-SIMS互补特性提供了见解的电荷减少,中和表面上的双电荷离子的解吸附动力学,而在原位 IRRAS探测周围的带电金属中心,这可能影响该有机配位体的结构的电子性质和固定化离子的反应性。总的来说,我们说明如何质量选择离子通过SIMS和IRRAS 原位分析结合的软着陆提供了洞察良好定义的物种和它有一个范围广泛的科学努力的影响面之间的相互作用。

Protocol

1,COOH-SAM表面对黄金的质量选择离子软着陆准备获得平坦的黄金基板上硅(Si)或云母背衬材料。或者,根据在文献118119中所述的方法制备金膜在硅或云母表面。注意:使用的表面,有如下规格:1 平方厘米 或圆形和直径5毫米,525微米厚的硅层,50埃厚的Ti的粘附层,1000的Au层。 将新鲜的金子在硅表面为玻璃闪烁小瓶,沉浸在纯(非变性)乙醇。 ?…

Representative Results

1,调查茹的反应(联吡啶)3 2 +对COOH-地对空导弹采用原位 TOF-SIMS 质量选择的有机金属离子的软着陆到官能化的自组装膜,首先说明利用原位 TOF-SIMS提供最大的灵敏度朝向检测中的单层沉积的离子和单个分子以及化学反应的任何产品之间形成加合物的下列曝光表面反应性气体。双电荷吡啶钌3 +离子的溶解和离解固相亚磷酸三(2,2&#…

Discussion

质量选择离子的软着陆,一般进行使用,存在于世界各地的几个实验室所专门配备这些实验独特的定制仪器。修改正在不断向这些工具以促成化合物的更广泛的电离,以达到更大的离子电流和更短的沉积时间,复软着陆,从而达到几个品种的同时沉积在表面上的不同位置,并允许更准确的选择离子通过两个质量 – 电荷之前,沉积率和离子迁移率。以类似的方式,表征技术的不断变化的阵容被加上?…

Declarações

The authors have nothing to disclose.

Acknowledgements

该研究是由办公室基础能源科学,化学科学,地质能源的美国能源部(DOE)的与生物科学部。 GEJ承认从鲍林团契及实验室指导研究和发展计划在太平洋西北国家实验室(PNNL)的支持。使用EMSL,由生物和环境研究的能源办公室的部门主办,位于西北太平洋国家实验室国家科学用户设施进行这项工作。西北太平洋国家实验室是由巴特尔为美国能源部运行。

Materials

Gold on Silicon Substrates 1 cm2 Platypus Technologies Au.1000.SL1custom
Gold on Silicon Substrates 4.8 mm diameter circular SPI Supplies 4176GSW-AB
Glass Scintillation Vials Fisher Scientific 03-337-14
Non-denatured Ethanol Sigma-Aldrich 459836-1L
Ultraviolet Cleaner Boekel Scientific
16-Mercaptohexadecanoic Acid Sigma-Aldrich 448303-5G
Hydrochloric Acid Sigma-Aldrich 320331-500ML
Aluminum Foil Sigma-Aldrich Z185140-1EA
Metal Forceps/Tweezers Wiha 49185
Nitrile Gloves Fisher Scientific S66383
Tris(2,2′-bipyridine)dichlororuthenium(II) hexahydrate Sigma-Aldrich 224758-1G
Methanol Sigma-Aldrich 322415-1L
1 mL Gas Tight Glass Syringe Hamilton
Syringe Pump KD Scientific 100
360 um ID Fused Silica Capillary Polymicro Technologies TSP075375
High Resistance Electrometer Keithley 6517A
Commercial TOF-SIMS Instrument Physical Electronics TRIFT
Ultra High Purity Oxygen Matheson G1979175
Research Purity Ethylene Matheson G2250178
Cesium Ion Source Heat Wave Labs 101502
Commercial FTIR Spectrometer Bruker Vertex 70

Referências

  1. Gologan, B., Green, J. R., Alvarez, J., Laskin, J., Cooks, R. G. Ion/surface reactions and ion soft-landing. Physical Chemistry Chemical Physics. 7, 1490-1500 (2005).
  2. Perez, A., et al. Functional nanostructures from clusters. Int J Nanotechnol. 7, 523-574 (2010).
  3. Laskin, J., Wang, P., Hadjar, O. Soft-landing of peptide ions onto self-assembled monolayer surfaces: an overview. Physical Chemistry Chemical Physics. 10, 1079-1090 (2008).
  4. Cyriac, J., Pradeep, T., Kang, H., Souda, R., Cooks, R. G. Low-Energy Ionic Collisions at Molecular Solids. Chem Rev. 112, 5356-5411 (2012).
  5. Verbeck, G., Hoffmann, W., Walton, B. Soft-landing preparative mass spectrometry. Analyst. 137, 4393-4407 (2012).
  6. Johnson, G. E., Hu, Q. C., Laskin, J. Soft Landing of Complex Molecules on Surfaces. Annu Rev Anal Chem. 4, 83-104 (2011).
  7. Ouyang, Z., et al. Preparing protein microarrays by soft-landing of mass-selected ions. Science. 301, 1351-1354 (2003).
  8. Blake, T. A., et al. Preparative linear ion trap mass spectrometer for separation and collection of purified proteins and peptides in arrays using ion soft landing. Anal Chem. 76, 6293-6305 (2004).
  9. Blacken, G. R., Volny, M., Vaisar, T., Sadilek, M., Turecek, F. In situ enrichment of phosphopeptides on MALDI plates functionalized by reactive landing of zirconium(IV)-n-propoxide ions. Anal Chem. 79, 5449-5456 (2007).
  10. Blacken, G. R., et al. Reactive Landing of Gas-Phase Ions as a Tool for the Fabrication of Metal Oxide Surfaces for In Situ Phosphopeptide Enrichment. J Am Soc Mass Spectr. 20, 915-926 (2009).
  11. Wang, P., Laskin, J. Helical peptide arrays on self-assembled monolayer surfaces through soft and reactive landing of mass-selected ions. Angew Chem Int Edit. 47, 6678-6680 (2008).
  12. Hu, Q. C., Wang, P., Laskin, J. Effect of the surface on the secondary structure of soft landed peptide ions. Phys Chem Chem Phys. 12, 12802-12810 (2010).
  13. Wang, P., Hadjar, O., Laskin, J. Covalent immobilization of peptides on self-assembled monolayer surfaces using soft-landing of mass-selected ions. J Am Chem Soc. 129, 8682-8683 (2007).
  14. Wang, P., Hadjar, O., Gassman, P. L., Laskin, J. Reactive landing of peptide ions on self-assembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces. Physical Chemistry Chemical Physics. 10, 1512-1522 (2008).
  15. Nanita, S. C., Takats, Z., Cooks, R. G., Myung, S., Clemmer, D. E. Chiral enrichment of serine via formation, dissociation, and soft-landing of octameric cluster ions. J Am Soc Mass Spectr. 15, 1360-1365 (2004).
  16. Pepi, F., et al. Soft landed protein voltammetry. (33), 3494-3496 (2007).
  17. Mazzei, F., et al. Soft-landed protein voltammetry: A tool for redox protein characterization. Anal Chem. 80, 5937-5944 (2008).
  18. Mazzei, F., Favero, G., Frasconi, M., Tata, A., Pepi, F. Electron-Transfer Kinetics of Microperoxidase-11 Covalently Immobilised onto the Surface of Multi-Walled Carbon Nanotubes by Reactive Landing of Mass-Selected Ions. Chemistry-a European Journal. 15, 7359-7367 (2009).
  19. Rauschenbach, S., et al. Electrospray Ion Beam Deposition: Soft-Landing and Fragmentation of Functional Molecules at Solid Surfaces. Acs Nano. 3, 2901-2910 (2009).
  20. Saf, R., et al. Thin organic films by atmospheric-pressure ion deposition. Nat Mater. 3, 323-329 (2004).
  21. Rader, H. J., et al. Processing of giant graphene molecules by soft-landing mass spectrometry. Nature Materials. 5, 276-280 (2006).
  22. Xirouchaki, C., Palmer, R. E. Pinning and implantation of size-selected metal clusters: a topical review. Vacuum. 66, 167-173 (2002).
  23. Xirouchaki, C., Palmer, R. E. Deposition of size-selected metal clusters generated by magnetron sputtering and gas condensation: a progress review. Philos T Roy Soc A. 362, 117-124 (2004).
  24. Li, Z. Y., et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature. 451, (2008).
  25. Heiz, U., Vanolli, F., Trento, L., Schneider, W. D. Chemical reactivity of size-selected supported clusters: An experimental setup. Rev Sci Instrum. 68, 1986-1994 (1997).
  26. Heiz, U., et al. Chemical reactions on size-selected clusters on surfaces. Nobel Symp. 117, 87-98 (2001).
  27. Kunz, S., et al. Size-selected clusters as heterogeneous model catalysts under applied reaction conditions. Phys Chem Chem Phys. 12, 10288-10291 (2010).
  28. Wepasnick, K. A., et al. Surface Morphologies of Size-Selected Mo-100 +/- 2.5 and (MoO3)(67+/-1.5) Clusters Soft-Landed onto HOPG. J Phys Chem C. 115, 12299-12307 (2011).
  29. Lim, D. C., Dietsche, R., Gantefor, G., Kim, Y. D. Size-selected Au clusters deposited on SiO2/Si: Stability of clusters under ambient pressure and elevated temperatures. Appl Surf Sci. 256, 1148-1151 (2009).
  30. Woodward, W. H., Blake, M. M., Luo, Z. X., Weiss, P. S., Castleman, A. W. Soft-Landing Deposition of Al-17(-) on a Hydroxyl-Terminated Self-Assembled Monolayer. J Phys Chem C. 115, 5373-5377 (2011).
  31. Benz, L., et al. Landing of size-selected Ag-n(+) clusters on single crystal TiO2 (110)-(1×1) surfaces at room temperature. J Chem Phys. 122, (2005).
  32. Tong, X., et al. Intact size-selected Au-n clusters on a TiO2(110)-(1 x 1) surface at room temperature. J Am Chem Soc. 127, 13516-13518 (2005).
  33. Kahle, S., et al. The Quantum Magnetism of Individual Manganese-12-Acetate Molecular Magnets Anchored at Surfaces. Nano Lett. 12, 518-521 (2012).
  34. Proch, S., Wirth, M., White, H. S., Anderson, S. L. Strong Effects of Cluster Size and Air Exposure on Oxygen Reduction and Carbon Oxidation Electrocatalysis by Size-Selected Pt-n (n <= 11) on Glassy Carbon Electrodes. J Am Chem Soc. 135, 3073-3086 (2013).
  35. Kaden, W. E., Wu, T. P., Kunkel, W. A., Anderson, S. L. Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO2 Surfaces. Science. 326, 826-829 (2009).
  36. Binns, C. Nanoclusters deposited on surfaces. Surf Sci Rep. 44, 1-49 (2001).
  37. Johnson, G. E., Priest, T., Laskin, J. Coverage-Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-Selected Ions. J Phys Chem C. 116, 24977-24986 (2012).
  38. Johnson, G. E., Priest, T., Laskin, J. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions. Acs Nano. 6, 573-582 (2012).
  39. Johnson, G. E., Wang, C., Priest, T., Laskin, J. Monodisperse Au-11 Clusters Prepared by Soft Landing of Mass Selected Ions. Anal Chem. 83, 8069-8072 (2011).
  40. Zachary, A. M., Bolotin, I. L., Asunskis, D. J., Wroble, A. T., Hanley, L. Cluster Beam Deposition of Lead Sulfide Nanocrystals into Organic Matrices. Acs Appl Mater Inter. 1, 1770-1777 (2009).
  41. Ayesh, A. I., Qamhieh, N., Ghamlouche, H., Thaker, S., El-Shaer, M. Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source. J Appl Phys. 107, (2010).
  42. Ayesh, A. I., Thaker, S., Qamhieh, N., Ghamlouche, H. Size-controlled Pd nanocluster grown by plasma gas-condensation method. J Nanopart Res. 13, 1125-1131 (2011).
  43. Ayesh, A. I., Qamhieh, N., Mahmoud, S. T., Alawadhi, H. Fabrication of size-selected bimetallic nanoclusters using magnetron sputtering. J Mater Res. 27, 2441-2446 (2012).
  44. Datta, D., Bhattacharyya, S. R., Shyjumon, I., Ghose, D., Hippler, R. Production and deposition of energetic metal nanocluster ions of silver on Si substrates. Surf Coat Tech. 203, 2452-2457 (2009).
  45. Majumdar, A., et al. Surface morphology and composition of films grown by size-selected Cu nanoclusters. Vacuum. 83, 719-723 (2008).
  46. Tang, J., Verrelli, E., Tsoukalas, D. Assembly of charged nanoparticles using self-electrodynamic focusing. Nanotechnology. 20, 10 (2009).
  47. Gracia-Pinilla, M. A., Martinez, E., Vidaurri, G. S., Perez-Tijerina, E. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation. Nanoscale Res Lett. 5, 180-188 (2010).
  48. Banerjee, A. N., Krishna, R., Das, B. Size controlled deposition of Cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique. Appl Phys. 90, 299-303 (2008).
  49. Judai, K., et al. A soft-landing experiment on organometallic cluster ions: infrared spectroscopy of V(benzene)(2) in Ar matrix. Chemical Physics Letters. 334, 277-284 (2001).
  50. Mitsui, M., Nagaoka, S., Matsumoto, T., Nakajima, A. Soft-landing isolation of vanadium-benzene sandwich clusters on a room-temperature substrate using n-alkanethiolate self-assembled monolayer matrixes. J Phys Chem B. 110, 2968-2971 (2006).
  51. Nagaoka, S., Matsumoto, T., Okada, E., Mitsui, M., Nakajima, A. Room-temperature isolation of V(benzene)(2) sandwich clusters via soft-landing into n-alkanethiol self-assembled monolayers. J Phys Chem B. 110, 16008-16017 (2006).
  52. Nagaoka, S., Matsumoto, T., Ikemoto, K., Mitsui, M., Nakajima, A. Soft-landing isolation of multidecker V-2(benzene)(3) complexes in an organic monolayer matrix: An infrared spectroscopy and thermal desorption study. J Am Chem Soc. 129, 1528-1529 (2007).
  53. Nagaoka, S., Ikemoto, K., Matsumoto, T., Mitsui, M., Nakajima, A. Soft-landing isolation of gas-phase-synthesized transition metal-benzene complexes into a fluorinated self-assembled monolayer matrix. J Phys Chem C. 112, 15824-15831 (2008).
  54. Ikemoto, K., Nagaoka, S., Matsumoto, T., Mitsui, M., Nakajima, A. Soft-Landing Experiments of Cr(benzene)(2) Sandwich Complexes onto a Carboxyl-Terminated Self-Assembled Monolayer Matrix. J Phys Chem C. 113, 4476-4482 (2009).
  55. Nagaoka, S., Ikemoto, K., Horiuchi, K., Nakajima, A. Soft- and Reactive-Landing of Cr(aniline)(2) Sandwich Complexes onto Self-Assembled Monolayers: Separation between Functional and Binding Sites. J Am Chem Soc. 133, 18719-18727 (2011).
  56. Pepi, F., et al. Chemically Modified Multiwalled Carbon Nanotubes Electrodes with Ferrocene Derivatives through Reactive Landing. J Phys Chem C. 115, 4863-4871 (2011).
  57. Franchetti, V., Solka, B. H., Baitinger, W. E., Amy, J. W., Cooks, R. G. Soft Landing of Ions as a Means of Surface Modification. International Journal of Mass Spectrometry and Ion Processes. 23, 29-35 (1977).
  58. Hadjar, O., et al. Design and performance of an instrument for soft landing of Biomolecular ions on surfaces. Anal Chem. 79, 6566-6574 (2007).
  59. Peng, W. P., et al. Ion soft landing using a rectilinear ion trap mass spectrometer. Anal Chem. 80, 6640-6649 (2008).
  60. Shen, J. W., et al. Soft landing of ions onto self-assembled hydrocarbon and fluorocarbon monolayer surfaces. Int J Mass Spectrom. 182, 423-435 (1999).
  61. Bottcher, A., Weis, P., Bihlmeier, A., Kappes, M. M. C-58 on HOPG: Soft-landing adsorption and thermal desorption. Physical Chemistry Chemical Physics. 6, 5213-5217 (2004).
  62. Klipp, B., et al. Deposition of mass-selected cluster ions using a pulsed arc cluster-ion source. Appl Phys a-Mater. 73, 547-554 (2001).
  63. Baker, S. H., et al. The construction of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters. Rev Sci Instrum. 71, 3178-3183 (2000).
  64. Haberland, H., Karrais, M., Mall, M., Thurner, Y. Thin-Films from Energetic Cluster Impact – a Feasibility Study. J Vac Sci Technol A. 10, 3266-3271 (1992).
  65. Pratontep, S., Carroll, S. J., Xirouchaki, C., Streun, M., Palmer, R. E. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev Sci Instrum. 76, (2005).
  66. Duncan, M. A. Invited Review Article: Laser vaporization cluster sources. Rev Sci Instrum. 83, (2012).
  67. Wagner, R. L., Vann, W. D., Castleman, A. W. A technique for efficiently generating bimetallic clusters. Rev Sci Instrum. 68, 3010-3013 (1997).
  68. Harbich, W., et al. Deposition of Mass Selected Silver Clusters in Rare-Gas Matrices. J Chem Phys. 93, 8535-8543 (1990).
  69. Denault, J. W., Evans, C., Koch, K. J., Cooks, R. G. Surface modification using a commercial triple quadrupole mass spectrometer. Anal Chem. 72, 5798-5803 (2000).
  70. Mayer, P. S., et al. Preparative separation of mixtures by mass spectrometry. Anal Chem. 77, 4378-4384 (2005).
  71. Badu-Tawiah, A. K., Wu, C. P., Cooks, R. G. Ambient Ion Soft Landing. Anal Chem. 83, 2648-2654 (2011).
  72. Badu-Tawiah, A. K., Campbell, D. I., Cooks, R. G. Reactions of Microsolvated Organic Compounds at Ambient Surfaces: Droplet Velocity, Charge State, and Solvent Effects. J Am Soc Mass Spectr. 23, 1077-1084 (2012).
  73. Laskin, J., Futrell, J. H. Activation of large ions in FT-ICR mass spectrometry. Mass Spectrom Rev. 24, 135-167 (2005).
  74. Laskin, J., Futrell, J. H. Collisional activation of peptide ions in FT-ICR mass spectrometry. Mass Spectrom Rev. 22, 158-181 (2003).
  75. Wysocki, V. H., Joyce, K. E., Jones, C. M., Beardsley, R. L. Surface-induced dissociation of small molecules, peptides,and non-covalent protein complexes. J Am Soc Mass Spectr. 19, 190-208 (2008).
  76. Abbet, S., Judai, K., Klinger, L., Heiz, U. Synthesis of monodispersed model catalysts using softlanding cluster deposition. Pure Appl Chem. 74, 1527-1535 (2002).
  77. Molina, L. M., et al. Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein: A joint experimental and theoretical study. Catal Today. 160, 116-130 (2011).
  78. Lei, Y., et al. Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects. Science. 328, 224-228 (2010).
  79. Lee, S., et al. Selective Propene Epoxidation on Immobilized Au6-10 Clusters: The Effect of Hydrogen and Water on Activity and Selectivity. Angew Chem Int Edit. 48, 1467-1471 (2009).
  80. Peng, W. P., et al. Redox chemistry in thin layers of organometallic complexes prepared using ion soft landing. Phys Chem Chem Phys. 13, 267-275 (2011).
  81. Johnson, G. E., Laskin, J. Preparation of Surface Organometallic Catalysts by Gas-Phase Ligand Stripping and Reactive Landing of Mass-Selected Ions. Chem-Eur J. 16, 14433-14438 (2010).
  82. Castleman, A. W., Jena, P. Clusters: A bridge between disciplines. P Natl Acad Sci USA. 103, 10552-10553 (2006).
  83. Jena, P., Castleman, A. W. Clusters: A bridge across the disciplines of physics and chemistry. P Natl Acad Sci USA. 103, 10560-10569 (2006).
  84. Castleman, A. W., Jena, P. Clusters: A bridge across the disciplines of environment, materials science, and biology. P Natl Acad Sci USA. 103, 10554-10559 (2006).
  85. Yoon, B., et al. Charging effects on bonding and catalyzed oxidation of CO on Au-8 clusters on MgO. Science. 307, 403-407 (2005).
  86. Landman, U., Yoon, B., Zhang, C., Heiz, U., Arenz, M. Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime. Top Catal. 44, 145-158 (2007).
  87. Habibpour, V., et al. Novel Powder-Supported Size-Selected Clusters for Heterogeneous Catalysis under Realistic Reaction Conditions. J Phys Chem C. 116, 26295-26299 (2012).
  88. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science. 321, 1331-1335 (2008).
  89. Turner, M., et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature. 454, (2008).
  90. Yin, F., Xirouchaki, C., Guo, Q. M., Palmer, R. E. High-temperature stability of size-selected gold nanoclusters pinned on graphite. Adv Mater. 17, 731-734 (2005).
  91. Palomba, S., Palmer, R. E. Patterned films of size-selected Au clusters on optical substrates. J Appl Phys. 101, (2007).
  92. Yin, F., Lee, S. S., Abdela, A., Vajda, S., Palmer, R. E. Communication: Suppression of sintering of size-selected Pd clusters under realistic reaction conditions for catalysis. J Chem Phys. 134, (2011).
  93. Zamboulis, A., Moitra, N., Moreau, J. J. E., Cattoen, X., Man, M. W. C. Hybrid materials: versatile matrices for supporting homogeneous catalysts. J Mater Chem. 20, 9322-9338 (2010).
  94. Notestein, J. M., Katz, A. Enhancing heterogeneous catalysis through cooperative hybrid organic-inorganic interfaces. Chem-Eur J. 12, 3954-3965 (2006).
  95. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 105, 1103-1169 (2005).
  96. Peng, W. P., Goodwin, M. P., Chen, H., Cooks, R. G., Wilker, J. Thermal formation of mixed-metal inorganic complexes at atmospheric pressure. Rapid Commun Mass Sp. 22, 3540-3548 (2008).
  97. Alvarez, J., et al. Preparation and in situ characterization of surfaces using soft landing in a Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem. 77, 3452-3460 (2005).
  98. Cyriac, J., Li, G. T., Cooks, R. G. Vibrational Spectroscopy and Mass Spectrometry for Characterization of Soft Landed Polyatomic Molecules. Anal Chem. 83, 5114-5121 (2011).
  99. Johnson, G. E., Lysonski, M., Laskin, J. In Situ Reactivity and TOF-SIMS Analysis of Surfaces Prepared by Soft and Reactive Landing of Mass-Selected Ions. Anal Chem. 82, 5718-5727 (2010).
  100. Nie, Z. X., et al. In Situ SIMS Analysis and Reactions of Surfaces Prepared by Soft Landing of Mass-Selected Cations and Anions Using an Ion Trap Mass Spectrometer. J Am Soc Mass Spectr. 20, 949-956 (2009).
  101. Gologan, B., et al. Ion soft-landing into liquids: Protein identification, separation, and purification with retention of biological activity. J Am Soc Mass Spectr. 15, 1874-1884 (2004).
  102. Judai, K., Abbet, S., Worz, A. S., Rottgen, M. A., Heiz, U. Turn-over frequencies of catalytic reactions on nanocatalysts measured by pulsed molecular beams and quantitative mass spectrometry. Int J Mass Spectrom. 229, 99-106 (2003).
  103. Cyriac, J., Wleklinski, M., Li, G. T., Gao, L., Cooks, R. G. In situ Raman spectroscopy of surfaces modified by ion soft landing. Analyst. 137, 1363-1369 (2012).
  104. Hu, Q. C., Wang, P., Gassman, P. L., Laskin, J. In situ Studies of Soft- and Reactive Landing of Mass-Selected Ions Using Infrared Reflection Absorption Spectroscopy. Anal Chem. 81, 7302-7308 (2009).
  105. Volny, M., et al. Surface-enhanced Raman spectroscopy of soft-landed polyatomic ions and molecules. Anal Chem. 79, 4543-4551 (2007).
  106. Kartouzian, A., et al. Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum. J Appl Phys. 104, (2008).
  107. Kaden, W. E., Kunkel, W. A., Roberts, F. S., Kane, M., Anderson, S. L. CO adsorption and desorption on size-selected Pdn/TiO2(110) model catalysts: Size dependence of binding sites and energies, and support-mediated adsorption. J Chem Phys. 136, (2012).
  108. Price, S. P., et al. STM characterization of size-selected V-1, V-2, VO and VO2 clusters on a TiO2 (110)-(1 x 1) surface at room temperature. Surf Sci. 605, 972-976 (2011).
  109. Benz, L., et al. Pinning mononuclear Au on the surface of titania. J Phys Chem B. 110, 663-666 (2006).
  110. Deng, Z. T., et al. A Close Look at Proteins: Submolecular Resolution of Two- and Three-Dimensionally Folded Cytochrome c at Surfaces. Nano Lett. 12, 2452-2458 (2012).
  111. Di Vece, M., Palomba, S., Palmer, R. E. Pinning of size-selected gold and nickel nanoclusters on graphite. Phys Rev B. , (2005).
  112. Benesch, J. L. P., et al. Separating and visualising protein assemblies by means of preparative mass spectrometry and microscopy. J Struct Biol. 172, 161-168 (2010).
  113. Davila, S. J., Birdwell, D. O., Verbeck, G. F. Drift tube soft-landing for the production and characterization of materials: Applied to Cu clusters. Rev Sci Instrum. 81, (2010).
  114. Rauschenbach, S., et al. Electrospray ion beam deposition of clusters and biomolecules. Small. 2, 540-547 (2006).
  115. Hadjar, O., Futrell, J. H., Laskin, J. First observation of charge reduction and desorption kinetics of multiply protonated peptides soft landed onto self-assembled monolayer surfaces. J Phys Chem C. 111, 18220-18225 (2007).
  116. Hadjar, O., Wang, P., Futrell, J. H., Laskin, J. Effect of the Surface on Charge Reduction and Desorption Kinetics of Soft Landed Peptide Ions. J Am Soc Mass Spectr. 20, 901-906 (2009).
  117. Heiz, U., Bullock, E. L. Fundamental aspects of catalysis on supported metal clusters. J Mater Chem. 14, 564-577 (2004).
  118. Nogues, C., Wanunu, M. A rapid approach to reproducible, atomically flat gold films on mica. Surf Sci. 573, (2004).
  119. Kawasaki, M., Uchiki, H. Sputter deposition of atomically flat Au(111) and Ag(111) films. Surf Sci. 388, (1997).
  120. Laskin, J., Denisov, E. V., Shukla, A. K., Barlow, S. E., Futrell, J. H. Surface-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer: Instrument design and evaluation. Anal Chem. 74, 3255-3261 (2002).
  121. Mize, T. H., et al. A modular data and control system to improve sensitivity, selectivity, speed of analysis, ease of use, and transient duration in an external source FTICR-MS. Int J Mass Spectrom. 235, 243-253 (2004).
  122. Mallick, P. K., Danzer, G. D., Strommen, D. P., Kincaid, J. R. Vibrational-Spectra and Normal-Coordinate Analysis of Tris(Bipyridine)Ruthenium(Ii). J Phys Chem-Us. 92, 5628-5634 (1988).
  123. Strommen, D. P., Mallick, P. K., Danzer, G. D., Lumpkin, R. S., Kincaid, J. R. Normal-Coordinate Analyses of the Ground and 3mlct Excited-States of Tris(Bipyridine)Ruthenium(Ii). J Phys Chem-Us. 94, 1357-1366 (1990).
  124. Kim, H., Lee, H. B. R., Maeng, W. J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films. 517, 2563-2580 (2009).
  125. Du, Y., George, S. M. Molecular layer deposition of nylon 66 films examined using in situ FTIR spectroscopy. J Phys Chem C. 111, 8509-8517 (2007).
  126. Yoshimura, T., Tatsuura, S., Sotoyama, W. Polymer-Films Formed with Monolayer Growth Steps by Molecular Layer Deposition. Appl Phys Lett. 59, 482-484 (1991).
  127. Loscutoff, P. W., Zhou, H., Clendenning, S. B., Bent, S. F. Formation of Organic Nanoscale Laminates and Blends by Molecular Layer Deposition. Acs Nano. 4, 331-341 (2010).
  128. George, S. M., Yoon, B., Dameron, A. A. Surface Chemistry for Molecular Layer Deposition of Organic and Hybrid Organic-Inorganic Polymers. Accounts Chem Res. 42, 498-508 (2009).
  129. Marginean, I., Page, J. S., Tolmachev, A. V., Tang, K. Q., Smith, R. D. Achieving 50% Ionization Efficiency in Subambient Pressure Ionization with Nanoelectrospray. Anal Chem. 82, 9344-9349 (2010).
  130. Page, J. S., Tang, K., Kelly, R. T., Smith, R. D. Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Anal Chem. 80, 1800-1805 (2008).
  131. Kelly, R. T., Page, J. S., Tang, K. Q., Smith, R. D. Array of chemically etched fused-silica emitters for improving the sensitivity and quantitation of electrospray ionization mass spectrometry. Anal Chem. 79, 4192-4198 (2007).
  132. Spraggins, J. M., Caprioli, R. High-Speed MALDI-TOF Imaging Mass Spectrometry: Rapid Ion Image Acquisition and Considerations for Next Generation Instrumentation. J Am Soc Mass Spectr. 22, 1022-1031 (2011).
  133. Majumdar, A., et al. Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature. Rev Sci Instrum. 80, (2009).
  134. Ganeva, M., Pipa, A. V., Hippler, R. The influence of target erosion on the mass spectra of clusters formed in the planar DC magnetron sputtering source. Surf Coat Tech. , 213-241 (2012).
  135. Tang, J., Verrelli, E., Tsoukalas, D. Selective deposition of charged nanoparticles by self-electric focusing effect. Microelectron Eng. 86, 898-901 (2009).

Play Video

Citar este artigo
Johnson, G. E., Gunaratne, K. D. D., Laskin, J. In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions. J. Vis. Exp. (88), e51344, doi:10.3791/51344 (2014).

View Video