Summary

在器官型海马脑片搭配全细胞记录

Published: September 28, 2014
doi:

Summary

Pair recordings are simultaneous whole cell patch clamp recordings from two synaptically connected neurons, enabling precise electrophysiological and pharmacological characterization of the synapses between individual neurons. Here we describe the detailed methodology and requirements for establishing this technique in organotypic hippocampal slice cultures in any laboratory equipped for electrophysiology.

Abstract

Pair recordings involve simultaneous whole cell patch clamp recordings from two synaptically connected neurons, enabling not only direct electrophysiological characterization of the synaptic connections between individual neurons, but also pharmacological manipulation of either the presynaptic or the postsynaptic neuron. When carried out in organotypic hippocampal slice cultures, the probability that two neurons are synaptically connected is significantly increased. This preparation readily enables identification of cell types, and the neurons maintain their morphology and properties of synaptic function similar to that in native brain tissue. A major advantage of paired whole cell recordings is the highly precise information it can provide on the properties of synaptic transmission and plasticity that are not possible with other more crude techniques utilizing extracellular axonal stimulation. Paired whole cell recordings are often perceived as too challenging to perform. While there are challenging aspects to this technique, paired recordings can be performed by anyone trained in whole cell patch clamping provided specific hardware and methodological criteria are followed. The probability of attaining synaptically connected paired recordings significantly increases with healthy organotypic slices and stable micromanipulation allowing independent attainment of pre- and postsynaptic whole cell recordings. While CA3-CA3 pyramidal cell pairs are most widely used in the organotypic slice hippocampal preparation, this technique has also been successful in CA3-CA1 pairs and can be adapted to any neurons that are synaptically connected in the same slice preparation. In this manuscript we provide the detailed methodology and requirements for establishing this technique in any laboratory equipped for electrophysiology.

Introduction

谷氨酸受体介导的大部分兴奋性突触传递的中枢神经系统突触。的局部存在于突触后膜的棘头离子型谷氨酸受体2亚型主要是N-甲基-D-天冬氨酸(NMDA),α-氨基-3 – 羟基-5 – 甲基异恶唑-4 – 丙酸(AMPA)受体。在静息膜电位,AMPA受体进行最突触后电流的突触传递过程中。在海马中,NMDA受体在触发变化AMPA受体在突触后膜的数量关键作用:通过作为“符合探测器”1来启动改变的突触强度1,NMDA受体参与突触机制这被认为是巩固学习和记忆在亚细胞水平。响应于在与突触前递质释放平行突触后神经元的去极化,钙经由NMDA进入受体启动AMPA受体插入或除去2。这些受体动力学背后突触可塑性:增加突触强度是长时程增强2,3(LTP),而在突触强度的降低是长期抑郁4(LTD)。因此,AMPA受体的运动被认为是负责突触可塑性的表达,而NMDA受体被认为是控制其诱导。

确定突触传递和可塑性背后的确切机制,需要研究突触小种群,最好的单突触。虽然有些突触非常适合于研究在这个水平上, 对持有5的花萼,对于大多数突触的人口,这是非常困难的,因为突触连接的小型和分散性。两个主要的电生理技术,已经开发了检查单突触连接:首先是最小的刺激,wherê1突触前纤维推测刺激细胞外。第二种技术是成对的记录,其中,来自突触连接的神经元的两个同时全细胞记录的处理。最小的刺激的一个主要优点是,它是快速和相对简单的执行,涉及到细胞外的刺激电极放置到轴突道同时从突触后神经元的记录。使用这种技术时,主要关注的是一个单细胞的可靠的刺激很少能保证审讯后审。

在过去的十五年中,我们经常使用的两个突触连接的锥体神经元6-17配对的全细胞记录。该技术的主要优点是,只有一个突触前神经元持续和可靠地刺激。它还允许不仅电特性,而且药理操纵突触前神经元6,18 <中/ SUP>。然而,突触连接的神经元之间的概率是低的,使得连接对难以得到19。使用器官型脑切片培养物绕过这个障碍如突触连接可以重新建立体外而且所得到的连接的性质是在天然脑组织20的类似。此外,器官型培养物表达的LTP,LTD 7-10,12-15,21和短期突触可塑性的另外的形式,包括双脉冲便利(PPF)和抑郁症(PPD)6,22,23,使可塑性的机制来要研究对神经元。在这里,我们描述了参与成功地实现这个体外系统配对录音的详细方法。这个信息可以很容易地适用于其它的实验系统,包括急性切片和其他脑区域。

Protocol

动物伦理声明: 在这个手稿中描述的协议,遵循由奥克兰大学和斯坦福大学的大学建立了动物护理指引。 P7的幼鼠被迅速砍头处死。海马解剖,然后立即进行,如下所述。 1,海马器官切片文化准备准备夹层中(仅用于解剖的大脑)。结合(在0.85%的NaCl 10,000单位的每一个,),将5ml的HEPES缓冲溶液,加入2ml的1M Tris溶液(pH 7.2)中200毫升最?…

Representative Results

突触连接是通过刺激突触前神经元被通过记录电极传递去极化电流脉冲(通常是20〜50 pA的20毫秒),以触发一个动作电位明显。突触后电流迹线,然后检查了突触EPSC的存在突触前动作电位( 图3A)的峰值后诱发的短(<5毫秒)和一致的延迟。在大多数实验中多个突触后神经元进行测试可以得到突触连接的一对前。总体而言,突触前CA3细胞〜1/3的monosynaptically耦合到突触后CA3细胞通过?…

Discussion

在这里,我们描述了在海马脑片培养建立成功配对的全细胞记录的要求。成对的记录,也可以在多个制剂中,包括急性切片和分离培养系统26,27进行。虽然这里的重点一直是在较长形式的突触可塑性(即LTP和LTD)的诱导,它强调的是配对的全细胞记录的器官,急性切片是重要的,分离细胞的准备工作提供了重要的见解量子大小,短-term可塑性,突触功能,以及LTP和LTD 2,4,8,26,27。

Declarações

The authors have nothing to disclose.

Acknowledgements

We would like to thank the members of the Montgomery and Madison labs for helpful discussion. We acknowledge the funding received from the following sources in this research: NFNZ, AMRF, Marsden Fund, HRC, and NIH.

Materials

Organotypic cultures Paired recordings
Minimum Essential Medium Stable motorized micromanipulators 
Penicillin-Streptomycin solution  Shallow tissue bath
HEPES buffer solution DIC camera
1M Tris stock solution  Amplifier
Hank’s Balanced Salt Solution Computer
Horse Serum  Vibration isolation table
plastic-coated miniature spatulas  Upright microscope
soft paintbrush  Data acquistion and analysis software
manual tissue chopper Electrode puller
#2 filter paper Faraday cage
#5  forceps
Membrane inserts
CO2 incubator 
Dissection hood
Class II hood

Referências

  1. Dingledine, R., Borges, K., Bowie, D., Traynelis, S. F. The glutamate receptor ion channels. Pharmacology Reviews. 51, 7-61 (1999).
  2. Malenka, R. C., Nicoll, R. A. Long-term potentiation – A decade of progress. Science. 285, 1870-1874 (1999).
  3. Bliss, T. V. P., Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology. 232, 331-356 (1973).
  4. Dudek, S. M., Bear, M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proceedings of the National Academy of Sciences USA. 89, 4363-4367 (1992).
  5. Borst, J. G., Soria van Hoeve, J. The calyx of held synapse: from model synapse to auditory relay. Annual Reviews in Physiology. 74, 199-224 (2012).
  6. Pavlidis, P., Madison, D. V. Synaptic transmission in pair recordings from CA3 pyramidal cells in organotypic culture. Journal of Neurophysiology. 81, 2787-2797 (1999).
  7. Pavlidis, P., Montgomery, J. M., Madison, D. V. Presynaptic protein kinase activity supports long-term potentiation at synapses between individual hippocampal neurons. Journal of Neuroscience. 20 (12), 4497-4505 (2000).
  8. Montgomery, J. M., Pavlidis, P., Madison, D. V. Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation. Neuron. 29, 691-701 (2001).
  9. Montgomery, J. M., Madison, D. V. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron. 33, 765-777 (2002).
  10. Montgomery, J. M., Selcher, J. C., Hansen, J. E., Madison, D. V. Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state. BMC Neuroscience. 6, 48 (2005).
  11. Waites, C. L., et al. Synaptic SAP97 isoforms regulate AMPA receptor dynamics and access to presynaptic glutamate. Journal of Neuroscience. 29 (14), 4332-4345 (2009).
  12. Emond, M., et al. AMPA receptor subunits define properties of state-dependent synaptic plasticity. Journal of Physiology. 588, 1929-1946 (2010).
  13. Li, D., et al. SAP97 directs NMDA receptor spine targeting and synaptic plasticity. Journal of Physiology. 589, 4491-4510 (2011).
  14. Genoux, D., Bezerra, P., Montgomery, J. M. Intra-spaced stimulation and protein phosphatase 1 dictate the direction of synaptic plasticity. European Journal of Neuroscience. 33 (10), 1761-1770 (2011).
  15. Selcher, J. C., Xu, W., Hanson, J. E., Malenka, R. C., Madison, D. V. Glutamate receptor subunit GluA1 is necessary for long-term potentiation and synapse unsilencing, but not long-term depression in mouse hippocampus. Brain Research. 1435, 8-14 (2012).
  16. Arons, M. H., et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. Journal of Neuroscience. 32 (43), 14966-14978 (2012).
  17. Montgomery, J. M., Madison, D. V. Discrete synaptic states define a major mechanism of synapse plasticity. Trends in Neuroscience. 27 (12), 744-750 (2004).
  18. Miles, R., Poncer, J. C. Pair recordings from neurones. Current Opinion in Neurobiology. 6 (3), 387-394 (1996).
  19. Malinow, R. Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations and LTP. Science. 252 (5006), 722-724 (1991).
  20. Gähwiler, B. H., Capogna, M., Debanne, D., McKinney, R. A., Thompson, S. M. Organotypic slice cultures: a technique has come of age. Trends in Neuroscience. 20 (10), 471-477 (1997).
  21. Stoppini, L., Buchs, P. A., Muller, D. A simple method for organotypic cultures of nervous tissue. Journal of Neuroscience Methods. 37 (2), 173-182 (1991).
  22. Debanne, D., Guérineau, N. C., Gähwiler, B. H., Thompson, S. M. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. Journal of Physiology. 491, 163-176 (1996).
  23. Debanne, D., Gähwiler, B. H., Thompson, S. M. Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal CA3-CA1 cell pairs in vitro. Proceedings of the National Academy of Sciences U S A. 93 (20), 11225-11230 (1996).
  24. Malinow, R., Tsien, R. W. Presynaptic enhancement shown by whole cell recordings of long-term potentiation in hippocampal slices. Nature. 346 (6280), 177-180 (1990).
  25. DeBello, W. M., et al. SNAP-mediated protein-protein interactions essential for neurotransmitter release. Nature. 373 (6515), 626-630 (1995).
  26. Bekkers, J. M., Stevens, C. F. Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proceedings of the National Academy of Sciences U S A. 87, 5359-5362 (1990).
  27. Malinow, R. Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP. Science. 252, 722-724 (1991).
  28. Debanne, D., Guérineau, N. C., Gähwiler, B. H., Thompson, S. M. Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. Journal of Neurophysiology. 73 (3), 1282-1294 (1995).
  29. Mitra, A., Blank, M., Madison, D. V. Developmentally altered inhibition in Ts65Dn, a mouse model of Down syndrome. Brain Research. 1440, 1-8 (2012).
  30. Hanson, J. E., Madison, D. V. Presynaptic FMR1 genotype influences the degree of synaptic connectivity in a mosaic mouse model of fragile X syndrome. Journal of Neuroscience. 27 (15), 4014-4018 (2007).
  31. Hanson, J. E., Blank, M., Valenzuela, R. A., Garner, C. C., Madison, D. V. The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down’s syndrome. Journal of Physiology. 579, 53-67 (2007).
check_url/pt/51958?article_type=t

Play Video

Citar este artigo
Fourie, C., Kiraly, M., Madison, D. V., Montgomery, J. M. Paired Whole Cell Recordings in Organotypic Hippocampal Slices. J. Vis. Exp. (91), e51958, doi:10.3791/51958 (2014).

View Video