Summary

从小鼠骨骼肌高通量微孔板呼吸测量最低数量的隔离线粒体

Published: November 13, 2015
doi:

Summary

Here, we present a modification of a previously reported method that allows for the isolation of high quality and purified mitochondria from smaller quantities of mouse skeletal muscle. This procedure results in highly coupled mitochondria that respire with high function during microplate based respirometirc assays.

Abstract

功能失调骨骼肌线粒体起到与老化,肥胖和II型糖尿病观察改变的代谢作用。从分离的线粒体制剂线粒体呼吸计测定允许对线粒体功能的药物和能调节代谢蛋白质的作用机制(多个)的评估,以及判定。目前的隔离程序往往需要大量的组织得到必要的透气性测定高品质的线粒体。本文所提出的方法描述了如何高品质纯化线粒体(〜450微克),可以从最小量的小鼠骨骼肌(〜75-100毫克)分离为高通量呼吸测量使用。我们确定了我们的隔离方法产生92.5±2.0%的完整线粒体通过测量柠檬酸合成酶的活性分光光度法。此外,在分离线粒体Western blot分析结果在微弱的表达cytoso的LIC蛋白,GAPDH,和线粒体蛋白质,COXIV的健壮表达。由于没有在分离线粒体的一个突出的GAPDH频带的指示小污染从隔离过程期间非线粒体来源。最重要的是,O 2的消耗率与微板为基础的技术,并确定用于耦合呼吸计测定显示高度耦合的呼吸控制率(RCR)的测量(RCR;> 6对于所有测定)和功能性线粒体。总之,增加了一个单独的切碎工序和显著减少先前报道的方法的电动机驱动的均化速度已允许的高品质和纯化的线粒体从较少量的小鼠骨骼肌,其导致高度耦合的线粒体,随着高功能呼吸作用的隔离在基于微孔板respirometirc检测。

Introduction

The primary function of mitochondria is to produce ATP from oxidative phosphorylation. However, mitochondria have many other important cellular functions including but not limited to: the production and detoxification of reactive oxygen species, the regulation of cytoplasmic and mitochondrial calcium, organelle trafficking, ionic homeostasis, and involvement in apoptosis1,2. Therefore, it is not surprising that dysfunctional mitochondria play a role in many disease pathologies, such as aging, neurodegenerative diseases, cardiovascular disease, cancer, obesity, and diabetes3,4. Importantly, skeletal muscle mitochondria specifically are involved in many of these pathologies3-5.

Mitochondrial respiration assays using isolated mitochondria allow for the assessment of electron transport chain and oxidative phosphorylation function, and the determination of mechanism(s) of action of drugs and proteins that modulate metabolism. Mitochondrial isolation procedures exist for multiple tissue and cell types for a variety of species6,7. However, these procedures often require large quantities of tissue/cells for a high quality mitochondria yield necessary for classic respirometric assays.

Microplate based respirometirc assays allow for high throughput measurements using minimal quantities of isolated mitochondria, often just several µg per well8. Therefore, we present a modification of previously published methods7 to allow for high quality mitochondria to be isolated from smaller quantities of mouse skeletal muscle for use in microplate based respirometirc assays. In addition, methods are provided to establish the quality of the mitochondrial isolation preparation and the integrity of the mitochondrial membranes. Given that skeletal muscle mitochondria are involved in many pathological conditions, the measurement of O2 consumption in mechanistically driven studies is becoming more prevalent in biomedical research9,10.

Protocol

经批准的协议下进行的机构动物护理动物的研究和利用委员会在弗吉尼亚理工学院和州立大学。 1.设置(时间:〜45分钟) 0.25%胰蛋白酶,分离缓冲液为线粒体(IBM)的1和IBM2在37℃水浴中解冻冷冻的商店。 冲洗玻璃器皿和在70%乙醇接着通过高纯度水解剖仪器。 由4部分IBM1稀释1份胰蛋白酶准备从0.25%胰蛋白酶股票0.05%胰蛋白酶溶液。 混合蛋白…

Representative Results

柠檬酸合酶活性充当细胞膜的完整性,因为柠檬酸合酶位于线粒体内膜,并且因此不应该存在于线粒体中具有完整的膜悬浮液的测量。 图1表示非超声处理线粒体样品中的柠檬酸合酶活性带有超声处理相比样品相同的隔离。声波处理线粒体结果在统计学上显著增加柠檬酸合酶活性(P <0.01)。重要的是,以下的隔离线粒体的92.5±2.0%是完整的。 图2描述了</…

Discussion

本文所提出的方法提供了从最小量的小鼠骨骼肌(〜75-100毫克)线粒体分离方法的详细描述。这种隔离方法能够产生高功能,纯粹的线粒体(〜450微克)就证明了氧气的消耗速率,RCR值,最大的柠檬酸合成酶的活性和免疫蛋白的表达。重要的是,可用于多种respirometirc测定用微孔板基于O 2的消耗技术,它允许高通量从这个过程中分离线粒体。

骨骼肌线粒体隔离…

Declarações

The authors have nothing to disclose.

Acknowledgements

The Fralin Life Science Research Institute and The Metabolic Phenotyping Core at Virginia Tech supported this work.

Materials

Essentially Fatty Sigma Aldrich A6003 N/A
Acid Free- BSA
Tris/HCl Promega H5123 N/A
KCL Sigma Aldrich P9541 N/A
Tris Base Promega H5135 N/A
EDTA Sigma Aldrich E6511 N/A
EGTA Sigma Aldrich E4378 N/A
Sucrose Sigma Aldrich S7903 N/A
D-Mannitol Sigma Aldrich 63559 N/A
Trypsin-EDTA (0.25%), phenol red Thermo Scientific 25200-056 N/A
Sodium Chloride
White Crystals or Crystalline Powder
≥99.0 %
Fisher Scientific BP3581 N/A
Sodium dodecyl sulfate Sigma Aldrich L3771  N/A
Sodium deoxycholate Sigma Aldrich D6750  N/A
Polyoxyethylene (12) nonylphenyl ether, branched Sigma Aldrich 238651 N/A
Single Edge Razor Blades Fisher Scientific 12-640 N/A
Falcon- 100 uM Nylon Cell Strainers Fisher Scientific 352360 N/A
Halt Protease & Phosphatse Inhibitor Cocktail Thermo Scientific 1861284 N/A
1.5mL microcentrifuge tubes with screw cap Thermo Scientific 3474 N/A
Zirconium Oxide beads Fisher Scientific C9012112 N/A
GAPDH antibody (1D4) Santa Cruz Biotechnology sc-59540 N/A
Anti- COXIV antibody Cell Signaling 4844s Any mitochondrial inner membrane protein will suffice
Peroxidase conjugated affinipure Donkey, Anti Rabbit IgG (H+L) Jackson ImmunoResearh 711-035-152 N/A
Peroxidase conjugated affinipure Goat, Anti Mouse IgG (H+L) Jackson ImmunoResearh 115-001-003 N/A
Triton-X100 Sigma Aldrich X100 N/A
Pierce BCA Protein Assay Kit  Thermo Scientific 23225 N/A
Pyruvic Acid, 98% Sigma Aldrich 107360 Store at 4°C,pH to 7.4 with KOH prior to use in respirometric assay
Succinic Acid Sigma Aldrich S9512 Store at room temperature, pH to 7.4 with KOH prior to use in respirometric assay
L(-) Malic Acid, BioXtra, ≥95% Sigma Aldrich M6413 Store at room temperature, to 7.4 with KOH prior to use in respirometric assay
L-Glutamic acid Sigma Aldrich G1251 Store at room temperature, to 7.4 with KOH prior to use in respirometric assay, to 7.4 with KOH prior to use in respirometric assay
Palmitoyl L-carnitine chloride Sigma Aldrich P1645 Store at -20°C
Oligomycin A, ≥ 95% (HPLC) Sigma Aldrich 75351 Store at -20°C
Carbonyl cyanide 4-(trifluoromethoxy) Sigma Aldrich C2920 Store at 2-8°C
phenylhydrazone
≥98% (TLC), powder [FCCP]
Antimycin A from streptomyces sp. Sigma Aldrich A8674 Store at -20°C
Adenosine 5′-diphosphate monopotassium salt dehydrate [ADP] Sigma Aldrich A5285 Store at -20°C, to 7.4 with KOH prior to use in respirometric assay
Rotenone Sigma Aldrich R8875 Store at room temperature

Referências

  1. Brand, M., Nicholls, D. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297-312 (2011).
  2. Nicholls, D. G., Ferguson, S. . Bioenergetics. , (2013).
  3. Nunnari, J., Suomalainen, A. Mitochondria: in sickness and in health. Cell. 148, 1145-1159 (2012).
  4. Lauri, A., Pompilio, G., Capogrossi, M. C. The mitochondrial genome in aging and senescence. Ageing Res. Rev. 18, 1-15 (2014).
  5. Dube, J. J., et al. Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance. Am. J. Physiol. Endocrinol. Metab. 12, 1117-1124 (2014).
  6. Fernandez-Vizarra, E., Lopez-Perez, M. J., Enriquez, J. A. Isolation of biogenetically competent mitochondria from mammalian tissues and cultured cells. Methods (San Diego, Calif). 26, 292-297 (2002).
  7. Frezza, C., Cipolat, S., Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287-295 (2007).
  8. Rogers, G. W., et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PloS one. 6, e21746 (2011).
  9. Guarino, R. D., et al. Method for determining oxygen consumption rates of static cultures from microplate measurements of pericellular dissolved oxygen concentration. Biotechnol. and Bioeng. 86, 775-787 (2004).
  10. Will, Y., Hynes, J., Ogurtsov, V. I., Papkovsky, D. B. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nat. Protoc. 1, 2563-2572 (2007).
  11. Hulver, M. W., et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2, 251-261 (2005).
  12. Frisard, M. I., et al. Toll-like receptor 4 modulates skeletal muscle substrate metabolism. Am. J. Physiol. Endocrinol. Metab. 298, e988-e998 (2010).
  13. Chance, B., Williams, G. R. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Subjects of Biochem. 17, 65-134 (1956).
  14. Garcia-Cazarin, M. L., Snider, N. N., Andrade, F. H. Mitochondrial isolation from skeletal muscle. JoVE. , (2011).
  15. Gross, V. S., et al. Isolation of functional mitochondria from rat kidney and skeletal muscle without manual homogenization. Anal. Biochem. 418, 213-223 (2011).
  16. Krieger, D. A., Tate, C. A., McMillin-Wood, J., Booth, F. W. Populations of rat skeletal muscle mitochondria after exercise and immobilization. J. Appl. Physiol.: Respir., Envir. and Ex. Physiol. 48, 23-28 (1980).
  17. Asmann, Y. W., et al. Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes. 55, 3309-3319 (2006).
  18. Lanza, I. R., Nair, K. S. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 457, 349-372 (2009).
check_url/pt/53217?article_type=t

Play Video

Citar este artigo
Boutagy, N. E., Pyne, E., Rogers, G. W., Ali, M., Hulver, M. W., Frisard, M. I. Isolation of Mitochondria from Minimal Quantities of Mouse Skeletal Muscle for High Throughput Microplate Respiratory Measurements. J. Vis. Exp. (105), e53217, doi:10.3791/53217 (2015).

View Video