Summary

ハイスループットマイクロプレート呼吸測定のためのマウスの骨格筋の最小量からミトコンドリアの単離

Published: November 13, 2015
doi:

Summary

Here, we present a modification of a previously reported method that allows for the isolation of high quality and purified mitochondria from smaller quantities of mouse skeletal muscle. This procedure results in highly coupled mitochondria that respire with high function during microplate based respirometirc assays.

Abstract

機能不全骨格筋ミトコンドリアは、加齢、肥満およびII型糖尿病で観察し、変化した代謝の役割を果たしています。分離されたミトコンドリア調製物からのミトコンドリア呼吸アッセイは、薬物や代謝を調節するタンパク質の作用メカニズム(複数可)のミトコンドリア機能の評価だけでなく、決意を可能にします。現在の単離方法は、多くの場合、呼吸アッセイに必要な高品質のミトコンドリアを得るために組織を大量に必要とします。本明細書に提示される方法は、(〜450μgの)は、高スループットの呼吸測定に使用するために、マウスの骨格筋の最小量(〜75-100ミリグラム)から単離することができる方法を高品質精製ミトコンドリア説明します。私たちは、分離法は、分光光度法、クエン酸合成酵素活性を測定することにより、92.5±2.0%、完全なミトコンドリアをもたらすことを決定しました。また、単離ミトコンドリアにおけるウェスタンブロット分析は、cytosoのかすかな発現をもたらしましたLICタンパク質、GAPDH、およびミトコンドリアタンパク質、COXIVの強い発現。単離されたミトコンドリアにおいて顕著GAPDHのバンドが存在しないことは、単離手順の間の非ミトコンドリア源からの少量の汚染の指標です。最も重要なのは、O 2消費率の測定マイクロプレートベースの技術とし、結合された呼吸アッセイのための呼吸調節比(RCR)を決定するには、高度(RCRを、全てのアッセイのための> 6)に接続ショーや機能ミトコンドリア。結論として、独立したミンチ工程の追加とはかなり以前に報告された方法のモーター駆動均質化速度を低下させることにより、高機能と呼吸性の高い結合されたミトコンドリアになり、マウス骨格筋の少ない量から高品質、精製されたミトコンドリアの単離を可能にしましたマイクロプレートベースrespirometircアッセイ中に。

Introduction

The primary function of mitochondria is to produce ATP from oxidative phosphorylation. However, mitochondria have many other important cellular functions including but not limited to: the production and detoxification of reactive oxygen species, the regulation of cytoplasmic and mitochondrial calcium, organelle trafficking, ionic homeostasis, and involvement in apoptosis1,2. Therefore, it is not surprising that dysfunctional mitochondria play a role in many disease pathologies, such as aging, neurodegenerative diseases, cardiovascular disease, cancer, obesity, and diabetes3,4. Importantly, skeletal muscle mitochondria specifically are involved in many of these pathologies3-5.

Mitochondrial respiration assays using isolated mitochondria allow for the assessment of electron transport chain and oxidative phosphorylation function, and the determination of mechanism(s) of action of drugs and proteins that modulate metabolism. Mitochondrial isolation procedures exist for multiple tissue and cell types for a variety of species6,7. However, these procedures often require large quantities of tissue/cells for a high quality mitochondria yield necessary for classic respirometric assays.

Microplate based respirometirc assays allow for high throughput measurements using minimal quantities of isolated mitochondria, often just several µg per well8. Therefore, we present a modification of previously published methods7 to allow for high quality mitochondria to be isolated from smaller quantities of mouse skeletal muscle for use in microplate based respirometirc assays. In addition, methods are provided to establish the quality of the mitochondrial isolation preparation and the integrity of the mitochondrial membranes. Given that skeletal muscle mitochondria are involved in many pathological conditions, the measurement of O2 consumption in mechanistically driven studies is becoming more prevalent in biomedical research9,10.

Protocol

動物実験は、動物実験によって承認されたプロトコルの下で行われ、バージニア工科大学で委員会を使用しました。 1.セットアップ(時間:〜45分) 37℃の水浴中で0.25%トリプシン、単離ミトコンドリアのバッファ(IBM)1 IBM2の凍結貯蔵を解凍。 ガラス製品をすすぎ、高純度水に続いて70%エタノール中で楽器を解剖。 4部IBM1で1部のトリプシンを?…

Representative Results

クエン酸シンターゼはミトコンドリア内膜に位置しており、したがって、無傷の膜を有するミトコンドリアの懸濁物に存在してはならないので、クエン酸合成酵素活性は、膜の完全性のための尺度として役立つ。 図1を超音波処理と比較して、非超音波処理し、ミトコンドリア試料中のクエン酸合成酵素活性を示し、同じ分離からのサンプル。クエン酸シンターゼ活性(P <0.01?…

Discussion

本明細書に提示する方法は、マウス骨格筋の最小量(〜75〜100ミリグラム)から、ミトコンドリアの単離手順の詳細な説明を提供します。この単離手順は、O 2消費率、RCR値、最大のクエン酸シンターゼ活性およびイムノブロットからのタンパク質の発現によって証明されるように、高機能、純粋なミトコンドリア(〜450μgの)を生成することができます。重要なことには、この手順か…

Declarações

The authors have nothing to disclose.

Acknowledgements

The Fralin Life Science Research Institute and The Metabolic Phenotyping Core at Virginia Tech supported this work.

Materials

Essentially Fatty Sigma Aldrich A6003 N/A
Acid Free- BSA
Tris/HCl Promega H5123 N/A
KCL Sigma Aldrich P9541 N/A
Tris Base Promega H5135 N/A
EDTA Sigma Aldrich E6511 N/A
EGTA Sigma Aldrich E4378 N/A
Sucrose Sigma Aldrich S7903 N/A
D-Mannitol Sigma Aldrich 63559 N/A
Trypsin-EDTA (0.25%), phenol red Thermo Scientific 25200-056 N/A
Sodium Chloride
White Crystals or Crystalline Powder
≥99.0 %
Fisher Scientific BP3581 N/A
Sodium dodecyl sulfate Sigma Aldrich L3771  N/A
Sodium deoxycholate Sigma Aldrich D6750  N/A
Polyoxyethylene (12) nonylphenyl ether, branched Sigma Aldrich 238651 N/A
Single Edge Razor Blades Fisher Scientific 12-640 N/A
Falcon- 100 uM Nylon Cell Strainers Fisher Scientific 352360 N/A
Halt Protease & Phosphatse Inhibitor Cocktail Thermo Scientific 1861284 N/A
1.5mL microcentrifuge tubes with screw cap Thermo Scientific 3474 N/A
Zirconium Oxide beads Fisher Scientific C9012112 N/A
GAPDH antibody (1D4) Santa Cruz Biotechnology sc-59540 N/A
Anti- COXIV antibody Cell Signaling 4844s Any mitochondrial inner membrane protein will suffice
Peroxidase conjugated affinipure Donkey, Anti Rabbit IgG (H+L) Jackson ImmunoResearh 711-035-152 N/A
Peroxidase conjugated affinipure Goat, Anti Mouse IgG (H+L) Jackson ImmunoResearh 115-001-003 N/A
Triton-X100 Sigma Aldrich X100 N/A
Pierce BCA Protein Assay Kit  Thermo Scientific 23225 N/A
Pyruvic Acid, 98% Sigma Aldrich 107360 Store at 4°C,pH to 7.4 with KOH prior to use in respirometric assay
Succinic Acid Sigma Aldrich S9512 Store at room temperature, pH to 7.4 with KOH prior to use in respirometric assay
L(-) Malic Acid, BioXtra, ≥95% Sigma Aldrich M6413 Store at room temperature, to 7.4 with KOH prior to use in respirometric assay
L-Glutamic acid Sigma Aldrich G1251 Store at room temperature, to 7.4 with KOH prior to use in respirometric assay, to 7.4 with KOH prior to use in respirometric assay
Palmitoyl L-carnitine chloride Sigma Aldrich P1645 Store at -20°C
Oligomycin A, ≥ 95% (HPLC) Sigma Aldrich 75351 Store at -20°C
Carbonyl cyanide 4-(trifluoromethoxy) Sigma Aldrich C2920 Store at 2-8°C
phenylhydrazone
≥98% (TLC), powder [FCCP]
Antimycin A from streptomyces sp. Sigma Aldrich A8674 Store at -20°C
Adenosine 5′-diphosphate monopotassium salt dehydrate [ADP] Sigma Aldrich A5285 Store at -20°C, to 7.4 with KOH prior to use in respirometric assay
Rotenone Sigma Aldrich R8875 Store at room temperature

Referências

  1. Brand, M., Nicholls, D. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297-312 (2011).
  2. Nicholls, D. G., Ferguson, S. . Bioenergetics. , (2013).
  3. Nunnari, J., Suomalainen, A. Mitochondria: in sickness and in health. Cell. 148, 1145-1159 (2012).
  4. Lauri, A., Pompilio, G., Capogrossi, M. C. The mitochondrial genome in aging and senescence. Ageing Res. Rev. 18, 1-15 (2014).
  5. Dube, J. J., et al. Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance. Am. J. Physiol. Endocrinol. Metab. 12, 1117-1124 (2014).
  6. Fernandez-Vizarra, E., Lopez-Perez, M. J., Enriquez, J. A. Isolation of biogenetically competent mitochondria from mammalian tissues and cultured cells. Methods (San Diego, Calif). 26, 292-297 (2002).
  7. Frezza, C., Cipolat, S., Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287-295 (2007).
  8. Rogers, G. W., et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PloS one. 6, e21746 (2011).
  9. Guarino, R. D., et al. Method for determining oxygen consumption rates of static cultures from microplate measurements of pericellular dissolved oxygen concentration. Biotechnol. and Bioeng. 86, 775-787 (2004).
  10. Will, Y., Hynes, J., Ogurtsov, V. I., Papkovsky, D. B. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nat. Protoc. 1, 2563-2572 (2007).
  11. Hulver, M. W., et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2, 251-261 (2005).
  12. Frisard, M. I., et al. Toll-like receptor 4 modulates skeletal muscle substrate metabolism. Am. J. Physiol. Endocrinol. Metab. 298, e988-e998 (2010).
  13. Chance, B., Williams, G. R. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Subjects of Biochem. 17, 65-134 (1956).
  14. Garcia-Cazarin, M. L., Snider, N. N., Andrade, F. H. Mitochondrial isolation from skeletal muscle. JoVE. , (2011).
  15. Gross, V. S., et al. Isolation of functional mitochondria from rat kidney and skeletal muscle without manual homogenization. Anal. Biochem. 418, 213-223 (2011).
  16. Krieger, D. A., Tate, C. A., McMillin-Wood, J., Booth, F. W. Populations of rat skeletal muscle mitochondria after exercise and immobilization. J. Appl. Physiol.: Respir., Envir. and Ex. Physiol. 48, 23-28 (1980).
  17. Asmann, Y. W., et al. Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes. 55, 3309-3319 (2006).
  18. Lanza, I. R., Nair, K. S. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 457, 349-372 (2009).
check_url/pt/53217?article_type=t

Play Video

Citar este artigo
Boutagy, N. E., Pyne, E., Rogers, G. W., Ali, M., Hulver, M. W., Frisard, M. I. Isolation of Mitochondria from Minimal Quantities of Mouse Skeletal Muscle for High Throughput Microplate Respiratory Measurements. J. Vis. Exp. (105), e53217, doi:10.3791/53217 (2015).

View Video