Summary

Imaging- и проточной цитометрии на основе анализа клеточной позиции и клеточного цикла в 3D меланомы сфероидов

Published: December 28, 2015
doi:

Summary

We describe two complementary methods using the fluorescence ubiquitination cell cycle indicator (FUCCI) and image analysis or flow cytometry to identify and isolate cells in the inner G1 arrested and outer proliferating regions of 3D spheroids.

Abstract

Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.

Introduction

Многоклеточные 3D сфероидов были известны как модели опухоли на протяжении десятилетий, однако это только недавно, что они пришли в более общем использовании в качестве модели в пробирке для многих солидных раков. Они все чаще используются в высокой пропускной экранов обнаружения наркотиков в качестве промежуточного между сложный, дорогостоящий и трудоемкий в моделях естественных условиях и простой, низкая стоимость 2D модели монослоя 1-6. Исследования, проведенные в 2D культуре часто не в состоянии быть воспроизведены в естественных условиях. Сфероид модели многих видов рака способны имитировать характеристики роста, лекарственной чувствительности, проникновение наркотиков, межклеточных взаимодействий, ограниченное наличие кислорода и питательных веществ и развития некроза, что видели в естественных условиях в твердых опухолях 6-11. Сфероидов разработать некротический стержень, покоя или G1 арестованного область, окружающую сердцевину, и пролиферирующих клеток на периферии сфероида 7. Развитие этих регионахможет изменяться в зависимости от плотности клеток, пролиферации и скоростью размера сфероида 12. Она была выдвинута гипотеза, что сотовый неоднородность видел в этих различных субрегионов может способствовать рака сопротивления терапии 13,14. Поэтому умение анализировать клетки в этих регионах отдельно важно ответов наркотиков опухолевых понимание.

Система показатель клеточного цикла флуоресценции убиквитинирования (Fucci) основан на красный (Kusabira Orange – нокаутом) и зеленый (Green Адзами – А.Г.) флуоресцентного мечения Cdt1 и geminin, которые деградировали в разных фазах клеточного цикла 15. Таким образом, клеточные ядра появляются красные в G1, желтый в начале S и зеленый в S / G2 / M фазе. Здесь мы опишем два дополнительных методов и с помощью Fucci определить клеточный цикл, вместе с использованием обработки изображений или диффузионного потока красителя цитометрии для определения, находятся ли клетки в G1 задержаны центра или внешней proliferatinг кольцо, а расстояние отдельных клеток от края сфероида. Эти методы были разработаны в нашей предыдущей публикации, где мы показали, что клетки меланомы в гипоксических регионов в центре сфероида и / или в присутствии целенаправленной терапии могут оставаться в G1 сердца в течение длительных периодов времени, и может повторно введите клеточного цикла, когда более благоприятные условия возникают 7.

Protocol

1. Fucci Трансдукция и клеточной культуры Fucci трансдукции Создать клеточные линии, стабильно экспрессирующие Fucci строит mKO2-hCdt1 (30-120) и MAG-hGem (1-100) 15, используя лентивирус сотрудничество трансдукции, как описано ранее 7. Примечание: Система Fucci теперь коммерчески дост?…

Representative Results

Есть несколько способов получения сфероидов опухоли, этот протокол использует неадгезированных метод роста, когда клетки культивируют на агаре или агарозном 3,7,9. На рисунке 1 показан пример C8161 меланомы сфероида после 3 дней на агар. C8161 сфероидов формировать регулярные ?…

Discussion

Полу-автоматизированный анализ изображений определили сфероида внутренний G1 арестован регион и пролиферирующих внешние слои. Этот метод может быть использован на живых сфероидов с помощью оптического сечение, или в фиксированных участках сфероида, чтобы определить изменения в не то…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Ms. Danae Sharp and Ms. Sheena Daignault for technical assistance. We thank Dr. Atsushi Miyawaki, RIKEN, Wako-city, Japan, for providing the FUCCI constructs, Dr. Meenhard Herlyn and Ms. Patricia Brafford, The Wistar Institute, Philadelphia, for providing cell lines, the Imaging and Flow Cytometry Facility at the Centenary Institute for outstanding technical support. We thank Mr. Chris Johnson and Dr. Andrew Barlow for Volocity software technical support. N.K.H. is a Cameron fellow of the Melanoma and Skin Cancer Research Institute, Australia. K.A.B. is a fellow of the Cancer Institute New South Wales (13/ECF/1-39). W.W. is a fellow of the Cancer Institute New South Wales (11/CDF/3-39). This work was supported by project grants RG 09-08 and RG 13-06 (Cancer Council New South Wales), 570778 and 1051996 (Priority-driven collaborative cancer research scheme/Cancer Australia/Cure Cancer Australia Foundation), 08/RFG/1-27 (Cancer Institute New South Wales), and APP1003637 and APP1084893 (National Health and Medical Research Council).

Materials

Hoechst 33342 Life Technologies H3570
agarose low melting point Life Technologies 16520-050 For sectioning
noble agar  Sigma A5431 For making spheroids
agarose for spheroids Fisher Scientific BP1356-100 For making spheroids
0.05% trypsin/EDTA Life Technologies 25300-054
HBSS Life Technologies 14175-103
10% formalin Sigma HT5014-1CS CAUTION: Harmful, corrosive. Use Personal Protective Equipment, do  not breath fumes (open in a fume cupboard).
live/dead near IR Life Technologies L10119
vibratome Technical Products International, Inc
coulture cup Thermo-Fisher Scientific SIE936 Mold for sectioning spheroids
hemocytometer Sigma Z359629
96-well tissue culture plate Invitro FAL353072
collagenase Sigma C5138 
confocal microscope Leica TCS SP5
Flow cytometer analyser Becton Dickinson LSRFortessa
volocity PerkinElmer Imaging software
flowjo Tree Star Flow cytometry software
Vaccuum grease Sigma Z273554
Mounting media Vector Laboratories H1000
FUCCI (commercial constructs) Life Technologies P36238 Transient transfection only
Cell strainer 70 um In Vitro FAL352350
Round bottom 5 mL tubes (sterile) In Vitro FAL352003
Round bottom 5 mL tubes (non-sterile) In Vitro FAL352008

Referências

  1. LaBarbera, D. V., Reid, B. G., Yoo, B. H. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert opinion on drug discovery. 7, 819-830 (2012).
  2. Beaumont, K. A., Mohana-Kumaran, N., Haass, N. K. Modeling Melanoma In Vitro and In Vivo. Healthcare. 2, 27-46 (2014).
  3. Smalley, K. S., Lioni, M., Noma, K., Haass, N. K., Herlyn, M. In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert opinion on drug discovery. 3, 1-10 (2008).
  4. Reid, B. G., et al. Live multicellular tumor spheroid models for high-content imaging and screening in cancer drug discovery. Current chemical genomics and translational medicine. 8, 27-35 (2014).
  5. Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F., Ebner, R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. Journal of biomolecular screening. 9, 273-285 (2004).
  6. Hirschhaeuser, F., et al. Multicellular tumor spheroids: an underestimated tool is catching up again. Journal of biotechnology. 148, 3-15 (2010).
  7. Haass, N. K., et al. Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment cell & melanoma research. 27, 764-776 (2014).
  8. Lucas, K. M., et al. Modulation of NOXA and MCL-1 as a strategy for sensitizing melanoma cells to the BH3-mimetic ABT-737. Clinical cancer research : an official journal of the American Association for Cancer Research. 18, 783-795 (2012).
  9. Smalley, K. S., et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Molecular cancer therapeutics. 5, 1136-1144 (2006).
  10. Thoma, C. R., Zimmermann, M., Agarkova, I., Kelm, J. M., Krek, W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Advanced drug delivery reviews. 69-70, 29-41 (2014).
  11. Santini, M. T., Rainaldi, G. Three-dimensional spheroid model in tumor biology. Pathobiology : journal of immunopathology, molecular and cellular biology. 67, 148-157 (1999).
  12. Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 240, 177-184 (1988).
  13. Haass, N. K. Dynamic tumour heterogeneity in melanoma therapy: how do we address this in a novel model system?. Melanoma Manag. 2, 93-95 (2015).
  14. Desoize, B., Jardillier, J. Multicellular resistance: a paradigm for clinical resistance. Critical reviews in oncology/hematology. 36, 193-207 (2000).
  15. Sakaue-Sawano, A., et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 132, 487-498 (2008).
  16. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of specific cell population by fluorescence activated cell sorting (FACS). Journal of visualized experiments : JoVE. , (2010).
  17. Smalley, K. S., et al. Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. The American journal of pathology. 166, 1541-1554 (2005).
  18. Wang, Q., et al. Targeting glutamine transport to suppress melanoma cell growth. International journal of cancer. Journal international du cancer. 135, 1060-1071 (2014).
  19. Lorenzo, C., et al. Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell division. 6, 22 (2011).
  20. Pampaloni, F., Ansari, N., Stelzer, E. H. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell and tissue research. 352, 161-177 (2013).
  21. Durand, R. E. Use of Hoechst 33342 for cell selection from multicell systems. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 30, 117-122 (1982).
  22. Laurent, J., et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC cancer. 13, 73 (2013).
  23. LaRue, K. E., Khalil, M., Freyer, J. P. Microenvironmental regulation of proliferation in multicellular spheroids is mediated through differential expression of cyclin-dependent kinase inhibitors. Cancer research. 64, 1621-1631 (2004).
  24. Kyle, A. H., Huxham, L. A., Baker, J. H., Burston, H. E., Minchinton, A. I. Tumor distribution of bromodeoxyuridine-labeled cells is strongly dose dependent. Cancer research. 63, 5707-5711 (2003).
  25. Minchinton, A. I., Tannock, I. F. Drug penetration in solid tumours. Nature reviews. Cancer. 6, 583-592 (2006).
  26. Giesbrecht, J. L., Wilson, W. R., Hill, R. P. Radiobiological studies of cells in multicellular spheroids using a sequential trypsinization technique. Radiation research. 86, 368-386 (1981).

Play Video

Citar este artigo
Beaumont, K. A., Anfosso, A., Ahmed, F., Weninger, W., Haass, N. K. Imaging- and Flow Cytometry-based Analysis of Cell Position and the Cell Cycle in 3D Melanoma Spheroids. J. Vis. Exp. (106), e53486, doi:10.3791/53486 (2015).

View Video