Summary

開発<em>インビトロ</em>眼プラットフォームはコンタクトレンズをテストします

Published: April 06, 2016
doi:

Summary

コンタクトレンズ(のCL)および他の眼関連のアプリケーションを評価するための現在のin vitroモデルは厳しく制限されています。提示眼のプラットフォームは、生理的な涙の流れ、涙ボリューム、空気暴露と機械的摩耗をシミュレートします。このシステムは、非常に汎用性とのCLで分析インビトロで種々に適用することができます。

Abstract

Currently, in vitro evaluations of contact lenses (CLs) for drug delivery are typically performed in large volume vials,1-6 which fail to mimic physiological tear volumes.7 The traditional model also lacks the natural tear flow component and the blinking reflex, both of which are defining factors of the ocular environment. The development of a novel model is described in this study, which consists of a unique 2-piece design, eyeball and eyelid piece, capable of mimicking physiological tear volume. The models are created from 3-D printed molds (Polytetrafluoroethylene or Teflon molds), which can be used to generate eye models from various polymers, such as polydimethylsiloxane (PDMS) and agar. Further modifications to the eye pieces, such as the integration of an explanted human or animal cornea or human corneal construct, will permit for more complex in vitro ocular studies. A commercial microfluidic syringe pump is integrated with the platform to emulate physiological tear secretion. Air exposure and mechanical wear are achieved using two mechanical actuators, of which one moves the eyelid piece laterally, and the other moves the eyeballeyepiece circularly. The model has been used to evaluate CLs for drug delivery and deposition of tear components on CLs.

Introduction

コンタクトレンズ(CL)アリーナ内の関心のある二つの重要な領域は、不快感や小説CLアプリケーションの開発が含まれています。 CLの不快感を根底にあるメカニズムを解明することは、新規の開発8。何十年もの間、フィールドの目を逃れている問題であるような薬物送達デバイス1,3,9およびバイオセンサーなどの機能のCL、10月12日には、関心の領域ですかなりの潜在的な市場と。両方の状況では、 インビトロモデルにおける高度な開発フェーズの間、適切なレンズ材料又は設計特性を選択することを支援するための関連情報を提供するであろう。残念ながら、のCLおよび他の眼関連のアプリケーションを評価するためのin vitroモデル電流は比較的原油と洗練されていないです。伝統的に、涙液層の堆積または薬物送達を評価するin vitroでのCLの研究は、固定された流体体積を含む静的な、大容量のバイアル中で行われるのGreATLY生理量を超えています。さらに、この単純なモデルは、自然の涙流れ成分と点滅反射を欠いている眼の環境の要因を定義しているどちらも。

洗練されたの開発は、生理学的に関連の眼」モデルは、「学際的なアプローチを必要とし、実質的なin vivoでの検証が必要になります。これらの理由から、私たちのin vitro眼モデルのための基本的な枠組みは、モデルが継続的に将来のアップグレードおよび変調によって改善することができるように、汎用性の高いです。現在までに、モデルは、涙液量、涙液の流れ、機械的摩耗及び空気曝露をシミュレートすることが可能です。その目的は、in vivoおよびex vivo観察に予測し、無料で意味のある結果を提供するin vitroモデルを作成することです。

Protocol

すべての実験は、大学のウォータールーの動物実験倫理委員会によって概説関連するすべてのガイドラインに従っやコンプライアンスに完成しました。ウシ目が寛大に地元の食肉処理場から寄贈されています。 1.アイモデル金型13の設計と製作ヒト成人の目の平均生理寸法に従って目のモデルを設計します。13 眼球と眼球モデルのまぶた片間250μmの?…

Representative Results

機械工場から3-D印刷から得られる合成目の鋳型は、 図1に示されている。これらの型は、所望の特性を有する接眼レンズを製造するために、例えば、アガロースPDMSとのようなポリマーの様々な使用することができます。マイクロ流体シリンジポンプと眼モデルプラットフォームの合図アセンブリは、図2に示されている。プラットフォームは?…

Discussion

設計と製造の金型(1.1節)、プラットフォームアセンブリ(セクション2.2.1-2.2.3)、および実験操作を監視する(セクション2.2.4-2.2.7:特別な注意を必要とするプロトコル内の3つの重要なステップがあります。 )。カビ(セクション1.1)の設計と生産の面では、眼球の作品は、人間の角膜の寸法に応じて設計されるべきです。眼球片が完全に商業コンタクトレンズ(CL)に収まるように作成?…

Declarações

The authors have nothing to disclose.

Acknowledgements

著者らは、高度な眼科材料の開発のための資金調達源NSERC 20/20ネットワークを承認したいと思います。

Materials

Arduino Uno R3 (Atmega328 – assembled) Adafruit 50 Board
Stepper motor Adafruit 324 Motor and Motor shield
Equal Leg Coupler 1.6mm 1/16" VWR CA11009-280 50 pcs of tube connector
Tubing PT/SIL 1/16"x1/8" VWR 16211-316 Case of 50feet
PDMS Dow Corning Sylgard 184 Solar Cell Encapsulation
Agarose, Type 1-A, low EEO Sigma-Aldrich A0169-25G
PHD UltraTM Harvard Apparatus 703006 MicroFluidic Pump
Bovine cornea Cargill, Guelph/ON
Soldidworks Dassault Systemes Software
3-D printing University of Waterloo – 3D Print Centre
Dissection tools Fine Science Tools General dissection tools
Medium 199 Sigma-Aldrich Culture medium storage for cornea
Fetal bovine serum Thermo Fisher Add to culture medium, 3% total volume

Referências

  1. Phan, C. M., Subbaraman, L. N., Jones, L. In vitro drug release of natamycin from beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin-functionalized contact lens materials. J Biomater Sci Polym Ed. 25, 1907-1919 (2014).
  2. Peng, C. C., Kim, J., Chauhan, A. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin E diffusion barriers. Biomaterials. 31, 4032-4047 (2010).
  3. Hui, A., Willcox, M., Jones, L. In vitro and in vivo evaluation of novel ciprofloxacin-releasing silicone hydrogel contact lenses. Invest Ophthalmol Vis Sci. 55, 4896-4904 (2014).
  4. Boone, A., Hui, A., Jones, L. Uptake and release of dexamethasone phosphate from silicone hydrogel and group I, II, and IV hydrogel contact lenses. Eye Contact Lens. 35, 260-267 (2009).
  5. Lorentz, H., Heynen, M., Trieu, D., Hagedorn, S. J., Jones, L. The impact of tear film components on in vitro lipid uptake. Optom Vis Sci. 89, 856-867 (2012).
  6. Hall, B., Phan, C. M., Subbaraman, L., Jones, L. W., Forrest, J. Extraction versus in situ techniques for measuring surface-adsorbed lysozyme. Optom Vis Sci. 91, 1062-1070 (2014).
  7. Mishima, S., Gasset, A., Klyce, S. D., Baum, J. L. Determination of tear volume and tear flow. Invest Ophthalmol Vis Sci. 5, 264-276 (1966).
  8. Nichols, J. J., et al. The TFOS international workshop on contact lens discomfort: executive summary. Invest Ophthalmol Vis Sci. 54, 7-13 (2013).
  9. Peng, C. C., Burke, M. T., Carbia, B. E., Plummer, C., Chauhan, A. Extended drug delivery by contact lenses for glaucoma therapy. J Control Release. 162, 152-158 (2012).
  10. Faschinger, C., Mossbock, G. Continuous 24 h monitoring of changes in intraocular pressure with the wireless contact lens sensor Triggerfish. First results in patients. Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 107, 918-922 (2010).
  11. Shaw, A. J., Davis, B. A., Collins, M. J., Carney, L. G. A technique to measure eyelid pressure using piezoresistive sensors. IEEE transactions on bio-medical engineering. 56, 2512-2517 (2009).
  12. Liao, Y. T., Yao, H. F., Lingley, A., Parviz, B., Otis, B. P. A 3-mu W CMOS glucose sensor for wireless contact-lens tear glucose monitoring. Ieee J Solid-St Circ. 47, 335-344 (2012).
  13. Coster, D. J. . Cornea. , (2002).
  14. Parekh, M., et al. A simplified technique for in situ excision of cornea and evisceration of retinal tissue from human ocular globe. Journal of visualized experiments : JoVE. , e3765 (2012).
  15. Way, S. Gear and pinion. US patent. , (1942).
  16. Lorentz, H., et al. Contact lens physical properties and lipid deposition in a novel characterized artificial tear solution. Molecular vision. 17, 3392-3405 (2011).
  17. Furukawa, R. E., Polse, K. A. Changes in tear flow accompanying aging. American journal of optometry and physiological optics. 55, 69-74 (1978).
  18. Bajgrowicz, M., Phan, C. M., Subbaraman, L., Jones, L. Release of ciprofloxacin and moxifloxacin from daily disposable contact lenses from an in vitro eye model. Invest Ophthalmol Vis Sci. , (2015).
  19. Luensmann, D., Zhang, F., Subbaraman, L., Sheardown, H., Jones, L. Localization of lysozyme sorption to conventional and silicone hydrogel contact lenses using confocal microscopy. Current eye research. 34, 683-697 (2009).
  20. Tieppo, A., Pate, K. M., Byrne, M. E. In vitro controlled release of an anti-inflammatory from daily disposable therapeutic contact lenses under physiological ocular tear flow. Eur J Pharm Biopharm. 81, 170-177 (2012).
  21. Ali, M., et al. Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow. J Control Release. 124, 154-162 (2007).
  22. White, C. J., McBride, M. K., Pate, K. M., Tieppo, A., Byrne, M. E. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses. Biomaterials. 32, 5698-5705 (2011).
  23. Kaczmarek, J. C., Tieppo, A., White, C. J., Byrne, M. E. Adjusting biomaterial composition to achieve controlled multiple-day release of dexamethasone from an extended-wear silicone hydrogel contact lens. J Biomater Sci Polym Ed. 25, 88-100 (2014).
  24. Mohammadi, S., Postnikoff, C., Wright, A. M., Gorbet, M. Design and development of an in vitro tear replenishment system. Ann Biomed Eng. 42, 1923-1931 (2014).
  25. Lorentz, H., Heynen, M., Khan, W., Trieu, D., Jones, L. The impact of intermittent air exposure on lipid deposition. Optom Vis Sci. 89, 1574-1581 (2012).
  26. Peng, C. C., Fajardo, N. P., Razunguzwa, T., Radke, C. J. In vitro spoilation of silicone-hydrogel soft contact lenses in a model-blink cell. Optom Vis Sci. 92, 768-780 (2015).
  27. Liu, P., et al. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech. 14, 748-756 (2013).

Play Video

Citar este artigo
Phan, C., Walther, H., Gao, H., Rossy, J., Subbaraman, L. N., Jones, L. Development of an In Vitro Ocular Platform to Test Contact Lenses. J. Vis. Exp. (110), e53907, doi:10.3791/53907 (2016).

View Video