Summary

方法来检查淋巴腺和血细胞中<em>果蝇</em>幼虫

Published: November 28, 2016
doi:

Summary

果蝇和哺乳动物造血系统有许多共同的特点,使果蝇有吸引力的遗传模型来研究造血功能。这里,我们证明了免疫组化的主要造血幼虫器官解剖和安装。我们还描述的方法来测定各种幼虫造血车厢,包括循环血细胞和无柄水晶细胞。

Abstract

果蝇 果蝇和哺乳动物造血系统之间有许多共同点存在,即使果蝇缺乏淋巴系表征哺乳动物适应性免疫,和哺乳动物造血发生在时间和空间上不同的阶段产生多种血细胞谱系。这两个系统都保持血液祖细胞与扩大或更换成熟谱系的水库。造血系统允许果蝇和哺乳动物以应对和适应免疫的挑战。重要的是,用于控制生成,维护,和造血系统的功能的转录调节和信号传导途径是从果蝇保守到哺乳动物。这些相似性允许果蝇被用于遗传模型造血发育和疾病。

下面我们详细分析研究果蝇幼虫的造血系统。在特别是,我们概括的方法来测量血细胞数量和浓度,体内可视化的特定成熟细胞系,并在循环和造血器官进行对血细胞免疫组化。这些分析可以揭示基因表达的变化的细胞过程,包括信令,存活,增殖和分化,并且可以用于研究各种关于造血的问题。在果蝇中可用的遗传工具相结合,这些测定法可以用于评估在所定义的遗传改变的造血系统。尽管没有特别这里概述,这些试验也可以用来检查环境的改变,如感染或饮食的影响,对造血系统。

Introduction

调节转录因子和信号转导通路即坐标造血系统的在血液系统疾病的发展,而且故障复杂机制仍然知之甚少。这些转录因子和信号通路,以及它们的调节,是高度果蝇和哺乳动物造血1-5之间是保守的。因此, 果蝇造血系统代表一个优秀的遗传模型来定义的分子机制控制造血和潜在的血液系统疾病。

哺乳动物类似, 果蝇产生在空间和时间上不同的造血的相位血细胞,称为血细胞。传统上, 果蝇造血被认为在胚胎中胚层和在幼虫淋巴腺被限制在相。最近的研究提供的证据表明,血细胞生成,也会发生在幼虫无梗CLU讲演者,并在成人腹部6-8。所有造血阶段产生两种类型的血细胞成熟的:浆细胞和晶体细胞。浆细胞是参与吞噬作用,先天免疫,和伤口愈合的巨噬细胞样细胞。水晶细胞含有黑色素,在昆虫免疫反应和伤口愈合使用的反应所需的亲phenoloxidases。幼虫造血可以产生第三成熟血细胞类型,称为lamellocyte,响应于如寄生蜂感染9,10-某些免疫挑战。 Lamellocytes是功能,与浆细胞和水晶结合的细胞,封装和消除在果蝇幼虫黄蜂奠定鸡蛋大,贴壁细胞。在不存在寄生的,lamellocytes未在野生型幼虫找到。黑色素群众像白化,封装蜂卵;许多果蝇突变株培养在没有寄生的黑色素群众。 lamello的存在核细胞和/或黑色素群众可以指示造血异常。事实上,黑色素质量表型已经被用于鉴定参与造血11-14基因和途径。

幼体造血系统是最广泛研究日期。它是由血细胞在血淋巴中循环的,角质层下图案化无梗血细胞群集,和血细胞驻留在淋巴腺。淋巴腺是一系列附连到背脉管双边瓣。淋巴腺的每个主叶被分成三个主要区域。最外面的区被称为皮层区和包含成熟的血细胞。最里面的区域被称为髓区并且包括静态血细胞前体。第三区,后信令中心,是在淋巴腺充当一个干细胞样的龛的基部一小群细胞。早期的工作建立关键功能的缺口15-18 </suP>,刺猬19,20,JAK-STAT 18,和无翅21的活动来调节幼虫淋巴腺发展。最近的研究已经表明,BMP 22,FGF-RAS 23和河马24,25信令也幼虫淋巴腺内起作用。

这里概述四幼虫造血测定法描述1)测量循环血细胞浓度,定义为每单位体积的细胞数,2)分离和定影循环血细胞对于免疫组化,3)可视晶体细胞在体内 ,和4)解剖,定影,和安装淋巴腺进行免疫组化。这些测定可用于造血读数来评估的功能和在幼虫造血系统的信号通路的规定。虽然这些方法已经在该领域以前使用的,这些试验的视觉文件已经开始最近才8,26-30。这里列举了几个出版物帮助FUL资源描述类似的方法和造血标记26,31-33。此外,控制和海盗是淋巴腺基底膜的有效指标。

Protocol

1.循环血细胞浓度 6小时 – 以获得大致相同的发育阶段的幼虫该测定中,通过允许雌性产卵2的一个固定的时间段限制鸡蛋收集。 在解剖盘孔填充用1×磷酸盐缓冲盐水(PBS, 表1)收集幼虫。 对于每一个幼虫,将10微升1×PBS中在微量离心管在冰上和10μl1×PBS中在一个干净的解剖垫。将解剖盘上的照明体视显微镜基地。 通过将它放置在纸巾上干燥个别幼虫将其?…

Representative Results

循环血细胞浓度血细胞数在整个幼虫发育35增加。为了说明,该方法检测血细胞数量和浓度的差异,无论生物原因,我们测量延迟和非延迟的幼虫血细胞的浓度。促前胸腺激素(PTTH)由PTTH产生神经元(PTTH>严峻)的遗传消融的损失产生于幼虫发育36的延迟。对于每个基因型,对于在25℃升高至少8个人幼虫在方案…

Discussion

在遗传或环境的改变,这里所描述的四种方法可单独或联合用于分析诸如信令,存活,增殖和分化的造血过程中不同的过程果蝇造血是一个动态过程。每只动物血细胞的数量增加35和发育过程中的淋巴腺的结构和基因表达的变化32。之前执行这些测定法,因此,它是通过使雌性产卵的固定时间量,并确认所期望的幼虫的发育阶段来限制蛋集合的关键。对于更短的蛋集合(小?…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Matthew O’Connell, Maryam Jahanshahi, and Andreas Jenny for assistance. We thank István Andó for plasmatocyte-specific antibodies, Utpal Banerjee for dome-meso-EBFP2 flies, Julian Martinez-Agosto for antp>GFP flies, and Michael O’Connor for ptth and ptth>grim flies. These methods were developed with support by the Kimmel Foundation, the Leukemia & Lymphoma Society, NIH/NCI R01CA140451, NSF 1257939, DOD/NFRP W81XWH-14-1-0059, and NIH/NCI T32CA078207.

Materials

PBS tablets MP Biomedicals 2810305
dissecting dish Corning 7220-85
microcentrifuge tube Denville C2170
silicone dissecting pad, made from Sylgard 184 kit Krayden (distributed through Fisher) NC9644388 (Fisher catalog number) Made in petri dish by mixing components of Sylgard elastomer kit according to manufacturer instructions.
stereomicroscope Morrell Instruments (Nikon distributor) mna42000, mma36300 Nikon models SMZ1000 and SMZ645
tissue wipe VWR 82003-820
forceps Electron Microscopy Sciences 72700-DZ
p200 pipette Eppendorf 3120000054
Countess Automated Cell Counter Invitrogen C10227
Countess cell counting chamber slides Invitrogen C10283
hemocytometer Hausser Scientific 3200
trypan blue stain Life Technologies T10282
formaldehyde Fisher BP531-500
Triton Fisher BP151-500
Tween 20 Fisher BP337-500
bovine serum albumin Rocky Mountain Biologicals BSA-BSH-01K
normal goat serum Sigma G9023-10ML
normal donkey serum Sigma D9663-10ML
200 proof ethanol VWR V1001
N-propyl gallate MP Biomedicals 102747
glycerol VWR EM-4750
DAPI (4’,6-diamidino-2-phenylindole) Fisher 62248
6-well plate Corning 351146
12-well plate Corning 351143
microscope cover glass, 22 mm square Fisher 12-544-10
microscope cover glass, 18mm circular Fisher 12-545-100
glass microscope slides Fisher 22-034-980
thermal cycler Eppendorf E950010037 Mastercycler EP Gradient S
PCR tubes USA Scientific 1402-2700
24-well plate Corning 351147
disposable transfer pipet Fisher 13-711-9AM
fluorescence microscope Zeiss Axio Imager.Z1

Referências

  1. Evans, C. J., Hartenstein, V., Banerjee, U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev Cell. 5 (5), 673-690 (2003).
  2. Crozatier, M., Meister, M. Drosophila haematopoiesis. Cell Microbiol. 9 (5), 1117-1126 (2007).
  3. Crozatier, M., Vincent, A. Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis Model Mech. 4 (4), 439-445 (2011).
  4. Gold, K. S., Bruckner, K. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol. 42 (8), 717-727 (2014).
  5. Hartenstein, V. Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol. 22, 677-712 (2006).
  6. Ghosh, S., Singh, A., Mandal, S., Mandal, L. Active hematopoietic hubs in Drosophila adults generate hemocytes and contribute to immune response. Dev Cell. 33 (4), 478-488 (2015).
  7. Leitao, A. B., Sucena, E. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. Elife. 4, (2015).
  8. Makhijani, K., Alexander, B., Tanaka, T., Rulifson, E., Bruckner, K. The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development. 138 (24), 5379-5391 (2011).
  9. Crozatier, M., Ubeda, J. M., Vincent, A., Meister, M. Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol. 2 (8), 196 (2004).
  10. Markus, R., et al. Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc Natl Acad Sci U S A. 106 (12), 4805-4809 (2009).
  11. Minakhina, S., Steward, R. Melanotic mutants in Drosophila: pathways and phenotypes. Genética. 174 (1), 253-263 (2006).
  12. Bina, S., Wright, V. M., Fisher, K. H., Milo, M., Zeidler, M. P. Transcriptional targets of Drosophila JAK/STAT pathway signalling as effectors of haematopoietic tumour formation. EMBO Rep. 11 (3), 201-207 (2010).
  13. Avet-Rochex, A., et al. An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis. BMC Dev Biol. 10, 65 (2010).
  14. Rodriguez, A., et al. Identification of immune system and response genes, and novel mutations causing melanotic tumor formation in Drosophila melanogaster. Genética. 143 (2), 929-940 (1996).
  15. Mandal, L., Banerjee, U., Hartenstein, V. Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat Genet. 36 (9), 1019-1023 (2004).
  16. Grigorian, M., Mandal, L., Hakimi, M., Ortiz, I., Hartenstein, V. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm. Dev Biol. 353 (1), 105-118 (2011).
  17. Lebestky, T., Jung, S. H., Banerjee, U. A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17 (3), 348-353 (2003).
  18. Krzemien, J., et al. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature. 446 (7133), 325-328 (2007).
  19. Mandal, L., Martinez-Agosto, J. A., Evans, C. J., Hartenstein, V., Banerjee, U. A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature. 446 (7133), 320-324 (2007).
  20. Benmimoun, B., Polesello, C., Haenlin, M., Waltzer, L. The EBF transcription factor Collier directly promotes Drosophila blood cell progenitor maintenance independently of the niche. Proc Natl Acad Sci U S A. 112 (29), 9052-9057 (2015).
  21. Sinenko, S. A., Mandal, L., Martinez-Agosto, J. A., Banerjee, U. Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev Cell. 16 (5), 756-763 (2009).
  22. Pennetier, D., et al. Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals. Proc Natl Acad Sci U S A. 109 (9), 3389-3394 (2012).
  23. Dragojlovic-Munther, M., Martinez-Agosto, J. A. Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function. Dev Biol. 384 (2), 313-330 (2013).
  24. Ferguson, G. B., Martinez-Agosto, J. A. Yorkie and Scalloped signaling regulates Notch-dependent lineage specification during Drosophila hematopoiesis. Curr Biol. 24 (22), 2665-2672 (2014).
  25. Milton, C. C., et al. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster. Curr Biol. 24 (22), 2673-2680 (2014).
  26. Evans, C. J., Liu, T., Banerjee, U. Drosophila hematopoiesis: Markers and methods for molecular genetic analysis. Methods. 68 (1), 242-251 (2014).
  27. Neyen, C., Bretscher, A. J., Binggeli, O., Lemaitre, B. Methods to study Drosophila immunity. Methods. 68 (1), 116-128 (2014).
  28. Small, C., Paddibhatla, I., Rajwani, R., Govind, S. An introduction to parasitic wasps of Drosophila and the antiparasite immune response. J Vis Exp. (63), e3347 (2012).
  29. Petraki, S., Alexander, B., Bruckner, K. Assaying Blood Cell Populations of the Drosophila melanogaster Larva. J Vis Exp. (105), (2015).
  30. Rizki, M. T. M., Rizki, R. M. Functional significance of the crystal cells in the larva of Drosophila mekmogaster. Journal of Biophysical and Biochemical Cytology. 5, 235-240 (1959).
  31. Kurucz, E., et al. Definition of Drosophila hemocyte subsets by cell-type specific antigens. Acta Biol Hung. 58, 95-111 (2007).
  32. Jung, S. H., Evans, C. J., Uemura, C., Banerjee, U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development. 132 (11), 2521-2533 (2005).
  33. Krzemien, J., Crozatier, M., Vincent, A. Ontogeny of the Drosophila larval hematopoietic organ, hemocyte homeostasis and the dedicated cellular immune response to parasitism. Int J Dev Biol. 54 (6-7), 1117-1125 (2010).
  34. Rizki, T. M., Rizki, R. M. Properties of the Larval Hemocytes of Drosophila-Melanogaster. Experientia. 36 (10), 1223-1226 (1980).
  35. Lanot, R., Zachary, D., Holder, F., Meister, M. Postembryonic hematopoiesis in Drosophila. Dev Biol. 230 (2), 243-257 (2001).
  36. McBrayer, Z., et al. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev Cell. 13 (6), 857-871 (2007).
  37. Reimels, T. A., Pfleger, C. M. Drosophila Rabex-5 restricts Notch activity in hematopoietic cells and maintains hematopoietic homeostasis. J Cell Sci. 128 (24), 4512-4525 (2015).
check_url/pt/54544?article_type=t

Play Video

Citar este artigo
Reimels, T. A., Pfleger, C. M. Methods to Examine the Lymph Gland and Hemocytes in Drosophila Larvae. J. Vis. Exp. (117), e54544, doi:10.3791/54544 (2016).

View Video