Summary

疲劳的小鼠模型的外围照射引起

Published: March 17, 2017
doi:

Summary

我们描述了使用靶向外围照射到在小鼠中诱导的疲劳样行为的方法。选定的非致命辐射剂量导致自愿轮运行活动为期一周的减少。

Abstract

癌症有关的疲劳(CRF)是一个令人痛心的和昂贵的条件下,往往会影响接受癌症治疗,包括放射治疗的病人。在这里,我们描述了使用靶向外围照射到在小鼠中诱导的疲劳样行为的方法。用适当的屏蔽,照射靶向小鼠的下腹部/骨盆区域,不放过脑,以努力模型由与骨盆癌的个体接受放射治疗。我们提供的照射剂量足以诱导小鼠,通过自愿车轮运行的活性(VWRA)测定疲劳样行为,而不引起明显的病态。由于车轮跑在小鼠正常的,自愿的行为,它的使用应该有其他行为测试或生物措施很少混杂效应。因此,车轮的运行可以理解疲劳的行为和生物相关因素可以作为一种可行的测量结果。 CRF是频繁合作复杂条件的并发症,并且可能具有与既癌症和其各种处理的原因。本文介绍的方法是调查的,更普遍的促进CRF的发展辐射引起的变化,探索生物网络,可以解释像疲劳外围触发,但集中驱动行为的发展和维持有用。

Introduction

癌症有关的疲劳(CRF)是一个令人痛心的和昂贵的条件下,往往会影响接受癌症治疗1例。疲劳既不是正比于最近的活动,也没有由其余减轻,并且它与各种相关的情绪,动机,注意力障碍的相关联,并且认知2。 CRF的生物原因是未知的,尽管它已经在许多情况下,已显示在某些情况下,血红蛋白水平和各种激素系统的功能与炎症和细胞因子水平相关联,还(参见Saligan 等人 3的生物审查CRF的研究)。

利用动物模型的对照研究必须要了解这个复杂的条件相关联的行为和生物学。而肿瘤相关4或化疗相关5,6脂肪igue已在啮齿动物模型进行了研究,CRF的病因可能是治疗特定的。为了调查有关放射治疗CRF,我们的小组最近开发的辐射性疲劳7的小鼠模型。在对比涉及脑或全身照射8,9现有的CRF的模型,该模型探讨如何在中央驱动行为的变化,如疲劳,可通过外周定位的照射过程触发。

此处描述的方法被设计成施用于患者的盆腔癌症放射疗法的模型,使用铅屏蔽定位与照射下腹部/骨盆区域。然而,通过修改铅屏蔽​​或其相对于实验动物的位置,这过程可适于建模的身体的其他部分的照射。自愿车轮运行的活动(VWRA)被用来测量疲劳状behavio- [R;因为它是一个自愿的,正常的行为10,它应该允许同时使用其他行为和生物试验。我们已经发现,外围照射足以降低VWRA小鼠而不引起明显的发病率7。与这个模型以后的实验可能有助于揭示免疫和其他生物信号的外围照射,以及在能够产生与CRF相关的赤字中枢神经系统下游的变化的影响。

Protocol

伦理学声明:本研究得到了美国国立卫生研究院(NIH)的动物护理和使用委员会。所有参与动物处理和研究成果衡量调查人员通过适当的动物护理和使用的NIH办公室和国家心脏,肺和血液研究所小鼠表型的核心培训。动物试验,住房,并在此研究中使用的环境条件各方面均符合本指南的护理和使用实验动物11。 1.住房和实验动物注:房屋?…

Representative Results

小鼠的三个批通过上述协议运行。共有16假和20照射(2 400 cGy的,3×800 cGy的/天)小鼠者。照射后连续三天,照射组有显著减少VWRA相比,假(混合重复测量方差分析:照射治疗,女1,13 = 19.233,P <0.001的主要作用)。效果是前七天显著照射后(简单主效应,P <0.05和Bonferroni校正),与发生在第三天的最低平均VWRA距离辐射( 图2A)之后。天25和26中,没?…

Discussion

我们已经描述了使用靶向外围照射到在小鼠中诱导的减少VWRA而不混淆发病率或死亡率的协议。重要的是,一个简单的屏蔽装置允许照射在这个协议始终如一的目标期望的区域,通过模仿患者盆腔癌接受放射治疗。相反,涉及大脑和全身照射8,9现有车型CRF,这个模型探讨了周边针对性的照射过程如何影响集中驱动的疲劳性能。在我们的代表性的结果,?…

Declarações

The authors have nothing to disclose.

Acknowledgements

笔者想感谢美国国立卫生研究院的国家心,肺和血液研究所(NHLBI)(NIH)的米歇尔·艾伦慷慨地分享她的专业知识在小鼠表型的方法和她持续不断的技术援助,以及为NHLBI的蒂莫西·亨特帮助我们开发出屏蔽装置。这项研究是由美国国立卫生研究院的护理研究和验证试验的一部分国立研究所院内研究司的支持是通过从肿瘤护理学会基金资助。

Materials

C57BL/6 Mice Charles River Strain code 027 (http://www.criver.com/products-services/basic-research/find-a-model/c57bl-6n-mouse)
Ketamine HCl Putney 100 mg/ml stock solution
Xylazine HCl Lloyd Laboratories 100 mg/ml stock solution
Rodent Tattoo System AIMS ATS-3 http://animalid.com/lab-animal-identification-systems/ats-3-general-rodent-tattoo-system
Lead Shielding Apparatus (custom made) One-inch thick lead shielding arranged as two boxes with a one-inch thick gap between them for targeted irradiation
Plexiglass shielding container (custom made) Plexiglass container filled with styrofoam. Styrofoam cutouts hold the lead shielding in place.
GammaCell 40 Exactor Best Theratronics http://www.theratronics.ca/product_gamma40.html
RAD Disk Ultra Best Theratronics http://www.theratronics.ca/product_rad.html
Mouse Single Activity Wheel Chamber Lafayette Instrument Company #80820 http://www.lafayetteneuroscience.com/product_detail.asp?itemid=980
Activity Wheel Counter for Computer Monitoring Lafayette Instrument Company #86061 http://www.lafayetteneuroscience.com/product_detail.asp?itemid=1052
Modular Cable for Wheel Counters Lafayette Instrument Company #86051-7 http://www.lafayetteneuroscience.com/product_detail.asp?itemid=1046
USB Computer Interface for Activity Wheel Counters Lafayette Instrument Company #86056A http://www.lafayetteneuroscience.com/product_detail.asp?itemid=1047
Activity Wheel Monitor Software Lafayette Instrument Company #86065 http://www.lafayetteneuroscience.com/product_detail.asp?itemid=1053

Referências

  1. Minton, O., et al. Cancer-related fatigue and its impact on functioning. Cancer. 119, 2124-2130 (2013).
  2. Bower, J. E. Cancer-related fatigue–mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 11 (10), 597-609 (2014).
  3. Saligan, L. N., et al. The biology of cancer-related fatigue: a review of the literature. Support Care Cancer. 23 (8), 2461-2478 (2015).
  4. Norden, D. M., et al. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function. Brain Behav Immun. 43, 76-85 (2015).
  5. Ray, M. A., Trammell, R. A., Verhulst, S., Ran, S., Toth, L. A. Development of a mouse model for assessing fatigue during chemotherapy. Comp Med. 61 (2), 119-130 (2011).
  6. Zombeck, J. A., Fey, E. G., Lyng, G. D., Sonis, S. T. A clinically translatable mouse model for chemotherapy-related fatigue. Comp Med. 63 (6), 491-497 (2013).
  7. Renner, M., et al. A murine model of peripheral irradiation-induced fatigue. Behav Brain Res. 307, 218-226 (2016).
  8. Van der Meeren, A., Lebaron-Jacobs, L. Behavioural consequences of an 8 Gy total body irradiation in mice: Regulation by interleukin-4. Canadian Journal of Physiology and Pharmacology. 79 (2), 140-143 (2001).
  9. York, J. M., et al. The biobehavioral and neuroimmune impact of low-dose ionizing radiation. Brain Behav Immun. 26 (2), 218-227 (2012).
  10. Meijer, J. H., Robbers, Y. Wheel running in the wild. Proc Biol Sci. 281 (1786), (2014).
  11. . . The Guide for the Care and Use of Laboratory Animals. , (2011).
  12. Heredia, L., Torrente, M., Domingo, J. L., Colomina, M. T. Individual housing and handling procedures modify anxiety levels of Tg2576 mice assessed in the zero maze test. Physiol Behav. 107 (2), 187-191 (2012).
  13. Varty, G. B., Paulus, M. P., Braff, D. L., Geyer, M. A. Environmental enrichment and isolation rearing in the rat: effects on locomotor behavior and startle response plasticity. Biol Psychiatry. 47 (10), 864-873 (2000).
  14. Pham, T. M., Brene, S., Baumans, V. Behavioral assessment of intermittent wheel running and individual housing in mice in the laboratory. J Appl Anim Welf Sci. 8 (3), 157-173 (2005).
  15. Knab, A. M., et al. Repeatability of exercise behaviors in mice. Physiol Behav. 98 (4), 433-440 (2009).
  16. Novak, C. M., Burghardt, P. R., Levine, J. A. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev. 36 (3), 1001-1014 (2012).
  17. Mineur, Y. S., Belzung, C., Crusio, W. E. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav Brain Res. 175 (1), 43-50 (2006).
  18. Perhach, J. L., Barry, H. Stress responses of rats to acute body or neck restraint. Physiol Behav. 5 (4), 443-448 (1970).
  19. Iwakawa, M., et al. Different radiation susceptibility among five strains of mice detected by a skin reaction. J Radiat Res. 44 (1), 7-13 (2003).
  20. Travis, E. L., Peters, L. J., McNeill, J., Thames, H. D., Karolis, C. Effect of dose-rate on total body irradiation: lethality and pathologic findings. Radiother Oncol. 4 (4), 341-351 (1985).
  21. Duran-Struuck, R., Dysko, R. C. Principles of bone marrow transplantation (BMT): providing optimal veterinary and husbandry care to irradiated mice in BMT studies. J Am Assoc Lab Anim Sci. 48 (1), 11-22 (2009).
  22. Duran-Struuck, R., et al. Differential susceptibility of C57BL/6NCr and B6.Cg-Ptprca mice to commensal bacteria after whole body irradiation in translational bone marrow transplant studies. J Transl Med. 6, 10 (2008).
check_url/pt/55145?article_type=t

Play Video

Citar este artigo
Wolff, B. S., Renner, M. A., Springer, D. A., Saligan, L. N. A Mouse Model of Fatigue Induced by Peripheral Irradiation. J. Vis. Exp. (121), e55145, doi:10.3791/55145 (2017).

View Video