Summary

建筑双层疏水阀早期检测翡翠灰螟

Published: October 04, 2017
doi:

Summary

有效的陷阱, 以吸引和捕获翡翠灰蛀虫 (EAB) 是一个关键的因素, 检测和管理这种侵入性害虫。双甲板陷阱, 放置在全太阳附近的灰树, 结合视觉和嗅觉的线索, 更有可能捕捉 EAB 比其他陷阱设计在野外试验。

Abstract

翡翠灰钻 (EAB) (吉丁吉丁Fairmaire), 最具破坏性的森林昆虫入侵北美洲, 已杀死数亿森林和景观灰 (水曲柳) 树木。一些人工陷阱设计, 以吸引和捕获 EAB 甲虫已经开发, 以检测, 划定, 并监测虫害。双层 (DD) 陷阱包括两个波纹塑料棱镜, 一个绿色和一个紫色, 连接到一个3米高的聚氯乙烯 (PVC) 管道支持的 t 岗位。在 PVC 管顶部的绿色棱镜是用cis-3-hexenol, 一种由灰叶产生的化合物。两个棱镜的表面都涂有粘性的昆虫胶, 以捕获成年 EAB 甲虫。双层圈闭应该放在灰树附近, 但在开阔的地方, 暴露在阳光下。本文介绍了双层圈闭的构造和放置, 并对田间试验进行了总结, 展示了 DD 陷阱在捕获 EAB 甲虫方面的功效。在最近的一项研究中, EAB 密度相对较低的地方, 双层捕收器比绿色或紫色的棱镜陷阱或绿色漏斗陷阱捕获的 EAB 大得多, 所有这些陷阱都被设计成在火山灰树的树冠上悬挂在树枝上。更大比例的双层陷阱是积极的,, 捕获至少一个 EAB, 比棱镜陷阱或漏斗陷阱挂在灰树檐篷。

Introduction

翡翠灰钻 (EAB) (吉丁吉丁Fairmaire) (鞘翅目: 吉丁) 已经杀死了数亿的火山灰 (水曲柳) 树木, 因为它是首次确定在2002年在大底特律, 密歇根州大都市区和附近的温莎, 安大略省, 加拿大。无意中蔓延的灰树, 原木和木柴, 连同自然分散甲虫, 导致 EAB 建立在至少27州, 和两个加拿大省份的日期1。最近的报道表明, EAB 也入侵俄罗斯莫斯科, 在那里, 它是杀害景观灰树2,3, 引起更多的担心, 它的潜力蔓延到欧洲。北美灰种的 EAB 寄主偏好和抗性的物种间变异已被记录为4,5,6,78,9,但几乎所有的北美灰种都可能是合适的寄主。灰死亡率的灾难性水平已记录在密歇根州和俄亥俄州的地区10,11,12, 具有相关的生态和经济影响13,14, 15,16

有效的方法来检测新的 EAB 虫害和监测低密度人口是管理这种侵入性害虫在城市, 居住区和森林环境的关键方面。早期发现为制定战略、保障资金和实施活动以减少 EAB 的影响提供了时间。例如, 市政官员和房主可以开始用全身杀虫剂在景观中处理有价值的火山灰, 然后在幼虫密度增加的情况下损害这些产品的功效17,18。同样, 查明新的侵扰和关于当地 EAB 分布的可靠信息, 使林农和财产所有人有机会实施木材销售、物种转换或其他活动, 以降低经济成本或生态灰死亡率的影响。

然而, 对低密度 EAB 种群的早期发现、划定和有效监测仍然很困难。目视调查, 以确定新出没的火山灰树是不可靠的, 因为火山灰很少表现出外部迹象或症状的 EAB 侵扰, 直到幼虫密度建设到中等甚至高级别4,19。检测低密度 EAB 的最有效方法涉及使用着灰检测树19,20,21,22。在春季或初夏, 灰树是着的, 去除树干周长周围的外树皮和韧皮部, 这就强调树木, 增加它们对成年 EAB 甲虫的吸引力。着树可以在秋季或冬季声带, 以确定 EAB 幼虫的存在和密度。虽然着灰树已在操作上用于 EAB 检测19232425, 但它们都有问题。剥皮着树可以是劳力密集型和寻找合适的树木, 剥可能是困难的, 特别是在城市或住宅区, 或当调查必须进行多年的19

人工陷阱诱饵与 EAB 引诱消除了许多关注与使用着灰检测树。与其他重要的森林害虫, 如吉普赛蛾 (毒蛾L) 和一些 Scolytinae 树皮甲虫, 产生长距离的性别或聚集费洛蒙, 到目前为止, 没有有效的远距离信息素已经找到 EAB。短范围性信息素,式-内酯, 可促进交配26,27, 但在田间试验中,式内酯诱饵并没有始终如一地增加 EAB 吸引到人工陷阱28。成年甲虫依赖于由火山灰树叶、树皮和木材发出的挥发性化合物来识别它们的宿主树293031并遇到潜在的伙伴。几个挥发性化合物已被评价用于引诱吸引成人 EABs 到人工陷阱27,32。目前, 在美国的 EAB 检测调查中使用的陷阱是诱饵含有cis-3-hexenol, 一个常见的绿叶挥发性产生的火山灰叶30,33。在前几年, 用于美国调查的 EAB 陷阱也被麦卢卡油, 这是从新西兰茶树提取 (Leptospermum 花马蹄和马蹄) 或菲比油, 巴西核桃树的提取物 (菲比鳐Mez。两者都含有几个萜, 也存在于灰树皮29中。然而, 这些天然油的供应不一致的问题限制了它们的使用。

除了寄主产生的挥发物, 成年 EAB 甲虫响应视觉刺激, 包括颜色和光20,32,34,35。早期的研究表明, EAB 成虫是相对敏捷的飞行物, 很少被各种火山灰挥发物引诱的黑色漏斗诱捕器捕获 (副总经理和 TMP, 未公布的数据)。其他陷阱设计, 如 cross-vane 陷阱, 被评估, 但 EAB 甲虫对黑暗的空间和阴影的反感限制了这些陷阱的有效性。

开发的三棱棱镜, 可以涂上明确的昆虫诱捕胶水35捕捉甲虫, 是一个重大的改进, 陷阱设计。成人 EABs 对颜色的吸引力在野外试验和实验室研究中也被广泛评价为 retinograph34。结果表明 EAB 甲虫一直被吸引到特定的绿色和紫色的色调32,36。在美国和加拿大的 EAB 调查活动中, 现在广泛使用彩色波纹塑料制作的棱镜阱。

因为 EAB 的成年人强烈地被光吸引, 甲虫更有可能在 open-grown 树上殖民着色树的20,21。美国 EAB 检测调查指南要求单个棱镜阱从沿道路生长的灰树中的 mid-canopy 分支或树林区域的边缘37暂停。理论上, 这将确保至少有一个棱镜的面板暴露在阳光下。然而, 在操作上, 棱镜陷阱可能会被头顶的树枝或相邻或附近的树木遮蔽。粘滞板表面经常被吹入叶子, 导致叶子坚持和遮蔽至少一部分的一个或多个面板。

双甲板 (DD) 陷阱被开发, 以整合多种视觉和嗅觉线索, 以提高 EAB 甲虫的吸引力。每个 DD 陷阱是由一个绿色和一个紫色波纹塑料棱镜附加到一个3米高的时间表40聚氯乙烯 (pvc) 管 (10 厘米直径), 这是支持滑动 PVC 管在 t 柱。使用绿色和紫色棱镜设计, 以吸引两性的 EAB 甲虫32,36,38,39。此外, 在火山灰树的树冠上, 不被悬挂在树枝上, DD 的陷阱被放在全太阳下, 5-10 米远离树木繁茂区域边缘的灰树, 或散落在 open-grown 的灰树之中。

Protocol

1. 准备绿色和紫色的面板 获取绿色和紫色的波纹塑料板 (120 厘米和 #215; 60 厘米), 用于从商业分销商那里 EAB 诱捕害虫管理用品。使用盒式刀具或实用刀在每个面板上分两条折线, 通过沿垂直波纹的塑料部分切割, 从面板的两个短边40厘米。这使得面板折叠成一个3棱棱镜 (每张脸将是 40 x 60 厘米)。面板通常是分销商的得分, 以方便折叠, 所以这一步可能是不必要的. 使用 and #189 在?…

Representative Results

在一个大规模的研究, 三人工陷阱设计以及着灰树部署系统, 10-20 米分开, 横跨一个新出没的16公顷森林地区与非常低密度的 EAB25。人工陷阱设计测试包括紫色棱镜诱饵与麦卢卡油和悬浮和 #62; 3 米从一个分支在灰树的树冠, 3 m 高 dd 陷阱与两个绿色板, 和 DD 陷阱与两个紫色的面板支持的 t 岗位。两种颜色的双层陷阱被诱饵混合的火山灰挥发物, 包括cis…

Discussion

DD 陷阱的设计和放置利用了成年 EAB 甲虫对特定颜色色调和光照的吸引力。PVC 管顶部的绿色棱镜对雄性甲虫最有吸引力, 它们将生命周期用在灰叶上, 以及交配32363839。较低的紫色棱镜确保陷阱也吸引女性甲虫32。与雄性一样, 雌性甲虫在其生命跨度内以火山灰叶为食, 但成熟雌?…

Declarações

The authors have nothing to disclose.

Acknowledgements

密歇根州立大学的几位技术员和研究生帮助开发、提炼和评估了多年来的 DD 陷阱设计, 包括安德烈 Anulewicz、罗伯特. 麦克唐纳和内森 Siegert。我们感谢詹姆斯 Wieferich 和杰里米·洛厄尔 (密歇根州立大学) 协助制定 DD 安装说明。詹姆斯 Wieferich 和莫莉 Robinett (密歇根州立大学) 审查了这份手稿的早期草稿, 我们赞赏他们的建议。约瑟夫弗兰切塞和戴蒙骗子 (USDA) 慷慨地分享了他们对 EAB 对颜色和寄主挥发物的反应的观察。为 DD 陷阱开发和评估提供资金的是由美国农业部森林服务局、东北地区、森林健康保护基金资助的。

Materials

Light green corrugated plastic panel: 120 cm x 60 cm Great Lakes IPM; www.greatlakesipm.com IPM-EAB GR All three surfaces of each prism need to be covered with clear insect trapping glue, even if the panels are pre-glued. Pre-glued panels are often not sticky enough to consistently capture or retain EAB beetles.  Other clear insect trapping glue products are available but are considerably more difficult to apply.   
Light purple corrugated plastic panel: 120 cm x 60 cm Great Lakes IPM; www.greatlakesipm.com IPM-EAB  LP
Large cable tie (4): 60 cm with a 79 kg capacity Cabletiesandmore.com; http://www.cabletiesandmore.com/cableties.php CT-24-NU-100PK
Medium cable ties (4): 20 cm with a 22.7 kg capacity Cabletiesandmore.com; http://www.cabletiesandmore.com/cableties.php CT261
Small cable tie: 10 cm with a 8.2 kg capacity Cabletiesandmore.com; http://www.cabletiesandmore.com/cableties.php CT204
cis-3-hexanol pouch Synergy Semiochemicals; http://www.semiochemical.com/html/buprestids.html) 3136 Lures used to bait DD traps consist of pouches containing cis-3-hexenol, a non-toxic compound present in ash leaves.  One pouch is attached to the lower edge of the top prism using a small cable tie.  Each pouch of cis-3-hexenol has a release rate of approximately 50 mg/day. Note that cis-3-hexenol is sometimes written as Z-3-hexenol. 
Aphinity Hexenol Sylvar Technologies
Lure GLV4 emerald ash borer Chemtica, Heredia, Costa Rica
cis-3-hexanol pouch WestGreen Global Technologies; http://www.westgreenglobaltechnologies.com/
Clear insect trapping glue  Hummert International; http://www.hummert.com/product-details/8196/pestick 01-3522-1  
Histoclear II histological clearing agent National Diagnostics; www.nationaldiagnostics.com HS-202 Histoclear II will be needed to remove the sticky insect glue from suspect beetles.  Other histological clearing agents are available but may not remove the glue and some products dissolve plastic, an important consideration if plastic containers are used for soaking the beetles. 
Histoclear II histological clearing agent Great Lakes IPM; www.greatlakesipm.com 10011 Histoclear II will be needed to remove the sticky insect glue from suspect beetles.  Other histological clearing agents are available but may not remove the glue and some products dissolve plastic, an important consideration if plastic containers are used for soaking the beetles. 
t-post: 1.5 m multiple sources A t-post (5 feet tall) (1.5 m) is used to support the PVC pipe.  
post pounder multiple sources Use a post pounder to set t-posts into the ground. No additional support is necessary.
HDPE (high density polyethylene) PVC pipe : 3 m x 10 cm diameter multiple sources
Forceps (rigid) multiple sources Forceps (tweezers) will be needed to remove suspect beetles from the traps. Rigid forceps work better than flexible forceps. 
Latex gloves multiple sources Latex gloves are needed for applying the insect trapping glue to the prisms and for checking the traps to collect EAB beetles.   
Baby oil or baby wipes  multiple sources Baby oil or baby wipes are helpful for removing the trapping glue from hands and equipment. 
Re-sealable plastic specimen bags: 5 cm x 8 cm  multiple sources Small re-sealable plastic specimen bags are useful for collecting beetles from traps.  Each bag should be labelled, either with pre-made, adhesive labels or with soft felt pens.   
Guides to help with distinguishing EAB from beetles native to North America are available on the national EAB website at www.emeraldashborer.info.  

Referências

  1. Baranchikov, Y., Mozolevskaya, E., Yurchenko, G., Kenis, M. Occurrence of the emerald ash borer, Agrilus planipennis in Russia and its potential impact on European forestry. OEPP/EPPO Bulletin. 38, 233-238 (2008).
  2. Orlova-Bienkowskaja, M. J. Ashes in Europe are in danger: the invasive range of Agrilus planipennis in European Russia is expanding. Biol. Invasions. 16, 1345-1349 (2014).
  3. Anulewicz, A. C., McCullough, D. G., Cappaert, D. L. Emerald ash borer (Agrilus planipennis) density and canopy dieback in three North American ash species. Arbor. Urban For. 33, 338-349 (2007).
  4. Chen, Y., Poland, T. M. Nutritional and defensive chemistry of three North American ash species: possible roles in host performance and preference by emerald ash borer adults. Grt. Lakes Entomol. 43, 20-33 (2010).
  5. Pureswaran, D. S., Poland, T. M. Host selection and feeding preference of Agrilus planipennis (Coleoptera: Buprestidae) on ash (Fraxinus spp). Environ. Entomol. 38, 757-765 (2009).
  6. Rebek, E. J., Herms, D. A., Smitley, D. R. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp). Environ. Entomol. 37, 242-246 (2008).
  7. Tanis, S. R., McCullough, D. G. Differential persistence of blue ash and white ash following emerald ash borer invasion. Can. J. For. Res. 42, 1542-1550 (2012).
  8. Tanis, S. R., McCullough, D. G., G, D. Host resistance of five Fraxinus species to Agrilus planipennis (Coleoptera: Buprestidae) and effects of paclobutrazol and fertilization. Environ. Entomol. 44, 287-299 (2015).
  9. Burr, S. J., McCullough, D. G. Condition of green ash (Fraxinus pennsylvanica) overstory and regeneration at three stages of the emerald ash borer invasion wave. Can. J. For. Res. 44, 768-776 (2014).
  10. Knight, K. S., Brown, J. P., Long, R. P. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis). Biol. Invasions. 15, 371-383 (2013).
  11. Klooster, W. S. Ash (Fraxinus spp.) mortality, regeneration, and seed bank dynamics in mixed hardwood forests following invasion by emerald ash borer (Agrilus planipennis). Biol. Invasions. 16, 859-873 (2014).
  12. Flower, C. E. Native bark-foraging birds preferentially forage in infected ash (Fraxinus spp.) and prove effective predators of the invasive emerald ash borer (Agrilus planipennis Fairmaire). For. Ecol. Manage. 313, 300-306 (2014).
  13. Gandhi, K. J. K., Herms, D. A. North American arthropods at risk due to widespread Fraxinus mortality caused by the alien emerald ash borer. Biol. Invasions. 12, 1839-1846 (2010).
  14. Kovacs, K. F. Cost of potential emerald ash borer damage in U.S. communities, 2009-2019. Ecol. Econ. 69, 569-578 (2010).
  15. Kovacs, K. The influence of satellite populations of emerald ash borer on projected economic damage in U.S. communities, 2010-2020. Environ. Manage. 92, 2170-2181 (2011).
  16. Herms, D. A., McCullough, D. G. Emerald ash borer invasion of North America: history, biology, ecology, impact and management. Ann. Rev. Entomol. 59, 13-30 (2014).
  17. Herms, D. A., McCullough, D. G., Smitley, D. R., Sadof, C. S., Cranshaw, W. . Insecticide options for protecting ash trees from emerald ash borer. , 16 (2014).
  18. Mercader, R. J., McCullough, D. G., Bedford, J. M. A comparison of girdled ash detection trees and baited artificial traps for Agrilus planipennis (Coleoptera: Buprestidae) detection. Environ. Entomol. 42, 1027-1039 (2013).
  19. McCullough, D. G., Poland, T. M., Anulewicz, A. C., Emerald Cappaert, D. Emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) attraction to stressed or baited ash (Fraxinus spp.) trees. Environ. Entomol. 38, 1668-1679 (2009).
  20. McCullough, D. G., Poland, T. M., Cappaert, D., Anulewicz, A. C. Emerald ash borer (Agrilus planipennis) attraction to ash trees stressed by girdling, herbicide and wounding. Can. J. For. Res. 39, 1331-1345 (2009).
  21. McCullough, D. G., Siegert, N. W., Poland, T. M., Pierce, S. J., Ahn, S. Z. Effects of trap type, placement and ash distribution on emerald ash borer captures in a low density site. Environ. Entomol. 40, 1239-1252 (2011).
  22. Hunt, L., Mastro, V., Lance, D., Reardon, R., Parra, G. Emerald ash borer state update: Ohio. , (2007).
  23. Mercader, R. J. Estimating local spread of recently established emerald ash borer, Agrilus planipennis, infestations and the potential to influence it with a systemic insecticide and girdled ash trees. For. Ecol. Manage. , (2016).
  24. Rauscher, K., Mastro, V., Reardon, R., Parra, G. The 2005 Michigan emerald ash borer response: an update. , (2005).
  25. Ryall, K. Detection and sampling of emerald ash borer (Coleoptera: Buprestidae) infestations. Can. Entomol. 147, 290-299 (2015).
  26. Silk, P. J., Ryall, K. Semiochemistry and chemical ecology of the emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae). Can. Entomol. 147, 277-289 (2015).
  27. Poland, T. M. Recent development and advances in survey and detection tools for emerald ash borer. , (2016).
  28. Crook, D. A. Development of a host-based semiochemical lure for trapping emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). Environ. Entomol. 37, 356-365 (2008).
  29. de Groot, P. Electrophysiological response and attraction of emerald ash borer to green leaf volatiles (GLVs) emitted by host foliage. J. Chem. Ecol. 34, 1170-1179 (2008).
  30. Poland, T. M., McCullough, D. G. Comparison of trap types and colors for capturing emerald ash borer adults at different population densities. Environ. Entomol. 43, 157-170 (2014).
  31. Crook, D. J., Mastro, V. C. Chemical ecology of the emerald ash borer Agrilus planipennis. J. Chem. Ecol. 36, 101-112 (2010).
  32. Rodriguez-Saona, C. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica. Chemoecology. 16, 75-86 (2006).
  33. Crook, D. J. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae) to selected regions of the electromagnetic spectrum. J. Econ. Entomol. 102, 2160-2169 (2009).
  34. Francese, J. A. Optimization of trap color for the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). J. Econ. Entomol. 103, 1235-1241 (2010).
  35. Crook, D. J., Khrimian, A., Cossé, A., Fraser, I., Mastro, V. C. Influence of trap color and host volatiles on capture of the emerald ash borer (Coleoptera: Buprestidae). J. Econ. Entomol. 105, 429-437 (2012).
  36. . Emerald Ash Borer Survey Guidelines Available from: https://www.aphis.usda.gov/plant_health/plant_pest_info/emerald_ash_b/downloads/survey_guidelines.pdf (2013)
  37. Grant, G. G., Poland, T. M., Ciaramitaro, T., Lyons, D. B., Jones, G. C. Comparison of male and female emerald ash borer (Coleoptera: Buprestidae) responses to phoebe oil and (Z)-3-hexenol lures in light green prism traps. J. Econ. Entomol. 104, 173-179 (2011).
  38. Cappaert, D., McCullough, D. G., Poland, T. M., Siegert, N. W. Emerald ash borer in North America: a research and regulatory challenge. Am. Entomol. 51, 152-165 (2005).
  39. Taylor, R. A. J., Bauer, L. S., Poland, T. M., Windell, K. Flight performance of Agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J. Insect Behav. 23, 128-148 (2010).
  40. Mercader, R. J. Evaluation of the potential use of a systemic insecticide and girdled trees in area wide management of the emerald ash borer. For. Ecol. Manage. 350, 70-80 (2015).
  41. Mercader, R. J., Siegert, N. W., Liebhold, A. M., McCullough, D. G. Simulating the effectiveness of three potential management options to slow the spread of emerald ash borer, (Agrilus planipennis) populations in localized outlier sites. Can. J. For. Res. 41, 254-264 (2011).
  42. Mercader, R. J., Siegert, N. W., Liebhold, A. M., McCullough, D. G. Influence of foraging behavior and host spatial distribution on the localized spread of the emerald ash borer, Agrilus planipennis. Pop. Ecol. 53, 271-285 (2011).
  43. Poland, T. M., McCullough, D. G., Anulewicz, A. C. Evaluation of an artificial trap for Agrilus planipennis (Coleoptera: Buprestidae) incorporating olfactory and visual cues. J. Econ. Entomol. 104, 517-531 (2011).
check_url/pt/55252?article_type=t

Play Video

Citar este artigo
McCullough, D. G., Poland, T. M. Building Double-decker Traps for Early Detection of Emerald Ash Borer. J. Vis. Exp. (128), e55252, doi:10.3791/55252 (2017).

View Video