Summary

遅行本鎖DNA合成の動態<em>インビトロ</em>バクテリオファージT7複製タンパク質によって

Published: February 25, 2017
doi:

Summary

We describe sensitive, gel-based discontinuous assays to examine the kinetics of lagging-strand initiation using the replication proteins of bacteriophage T7.

Abstract

Here we provide protocols for the kinetic examination of lagging-strand DNA synthesis in vitro by the replication proteins of bacteriophage T7. The T7 replisome is one of the simplest replication systems known, composed of only four proteins, which is an attractive feature for biochemical experiments. Special emphasis is placed on the synthesis of ribonucleotide primers by the T7 primase-helicase, which are used by DNA polymerase to initiate DNA synthesis. Because the mechanisms of DNA replication are conserved across evolution, these protocols should be applicable, or useful as a conceptual springboard, to investigators using other model systems. The protocols described here are highly sensitive and an experienced investigator can perform these experiments and obtain data for analysis in about a day. The only specialized piece of equipment required is a rapid-quench flow instrument, but this piece of equipment is relatively common and available from various commercial sources. The major drawbacks of these assays, however, include the use of radioactivity and the relative low throughput.

Introduction

DNAの複製は、すべての細胞の生命の保存機能です。アイデンティティおよびレプリケーション・コンポーネントの数は広く変化するが、一般的なメカニズムが進化1間で共有されています。ここで、我々は、T7レプリソームのコンポーネントによってインビトロでラギング鎖DNA合成の動態を理解することを目的とした放射性基質を使用して、ゲルに基づく、不連続動態実験を記載します。バクテリオファージT7の複製機構は、4つのタンパク質(DNAポリメラーゼ、GP5、そのプロセッシング因子、 大腸菌チオレドキシン、二官能性プライマーゼ、ヘリカーゼGP4、及び一本鎖DNA結合タンパク質、GP2からなる非常に簡単です。 5)2。この機能は、DNA複製に関与する保存された生化学的機構を研究するための魅力的なモデルシステムになります。

特別重点は、プライマーゼT7 DNA、criticaによりリボヌクレオチドプライマーの形成に配置されていますDNA合成の開始におけるL段階。また、一つは、反応混合物に含めることにより、T7 DNAポリメラーゼ、または他の複製タンパク質によって、これらのプライマーの使用を調べることができます。 T7プライマーゼ、ヘリカーゼ、GP4は、プライマーゼ認識部位、またはPRS(5'-GTC-3 ')と呼ばれる特定のDNA配列においてDNA合成のためのプライマーの形成を触媒します。 PRS中のシトシンは、サイトの認識のために不可欠であり、不可解ですが、それが製品3にコピーされていません。 GP4によるプライマー合成の最初のステップは、その後トリマーに、そして最終的にpppACCC、pppACCA、またはpppACACは、テンプレート4の配列に依存し、機能テトラヌクレオチドプライマーに拡張されたジヌクレオチドpppAC、の形成を含みます。これらのプライマーは、その後もGP4支援プロセス5,6でDNA合成を開始するために、T7 DNAポリメラーゼによって使用することができます。この点において、プライマーゼドメインは、それらの解離を防止する、テンプレートを使用して非常に短いtetraribonucleotidesを安定させるポリメラーゼ活性部位7にプライマー/鋳型の確保に資する方法でDNAポリメラーゼに係合します。これらの手順(RNAプライマー合成、ポリメラーゼへのプライマーのハンドオフ、および拡張子)はラギング鎖を複製するために複数のサイクルで繰り返され、リーディング鎖の複製と調整する必要があります。

ここに記載のアッセイは、高感度であり、適度な時間内に行うことができます。しかし、それらは比較的低いスループットと細心の注意が放射性物質の使用・廃棄に注意が必要です。で反応が進行する速度に応じて、1は、定常または前定常状態のいずれかで反応時間のコースの意味の分析のために適した時間スケールでサンプルを達成するために迅速な急冷装置を採用することがあります。最近、我々はevidencを提供するために、ここに記載のアッセイを使用しました岡崎フラグメントの開始におけるGP4のプライマーゼドメインからのプライマーのリリースの重要性の電子。さらに、当社は、効率的なプライマーの形成と利用8を促進する上で、タンパク質、gp2.5を結合T7一本鎖DNAのための調節的役割の証拠を発見しました。

Protocol

注:このような手袋、安全メガネ、白衣、および適切なアクリルの盾として、を含むがこれらに限定されない、個人用保護具の使用を放射性物質の安全な使用、廃棄に関するすべての機関の規制に従ってください。 注:標準緩衝液は、40mMのHEPES-KOH、pHは7.5、50 mMのグルタミン酸カリウム、5mMのDTT、0.1mMのEDTA(このバッファは5倍の濃度で予備製)との各dNTP 0.3 mMの構成され…

Representative Results

手動多代謝回転条件下GP4によって触媒されるプライマーの合成反応をサンプリングすることによって、 すなわち 、プロトコルのステップ1に記載したように、図1Aに示した結果が得られました。ここで、ゲル電気泳動後の製品の範囲は、プライマー合成反応( 図1A)内のα位の32 Pで標識されたCTPを用いて観察するこ…

Discussion

これらの実験を行う際に最も重要な要因は、高活性精製された酵素の利用です。 GP4との作業中に、例えば、我々は、-20℃で50%グリセロールを含むそのバッファ中の精製酵素の貯蔵(20 mMリン酸カリウム、pH7.4中、0.1mMのEDTA、1mMのDTT)に見出さはの減少をもたらします数ヶ月にわたる準備の具体的な活動。したがって、我々は今、精製25mMトリス – 塩酸、pH7.5の、50mMのNaCl、0.1mMのEDTA、1mMのTCEPで…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank C.C.R. laboratory members for comments and S. Moskowitz for figure preparation. This work was supported by National Institutes of Health Grants F32GM101761 (A.J.H.) and GM54397 (C.C.R.).

Materials


Tris pre-set crystals
pH 7.5
SIGMA T4128 
Tris base  SIGMA 93362
L-Glutamic acid potassium salt monohydrate SIGMA G1501 
Magnesium chloride hexahydrate Mallinckrodt Chemicals 5958-04
1,4-Dithiothreitol J.T. Baker F780-02
Sodium Dodecyl Sulfate MP Biomedicals 811030
(Ethylenedinitrilo) Tetraacetic acid, disodium salt, dihydrate Mallinckrodt Chemicals 4931-04
[α-32P] CTP PerkinElmer BLU508H radioactive, take protective measures
[γ-32P] ATP PerkinElmer BLU502A radioactive, take protective measures
100 mM dATP, dCTP, dGTP, dTTP  Affymetrix 77100 four dNTPs part of set
100 mM ATP and CTP Epicentre RN02825 part of NTP set
ssDNA constructs Integrated DNA Technologies N/A custom sequences 
methanol  Macron Fine Chemicals 3017-08
formamide Thermo Scientific 17899
bromophenol blue SIGMA B8026 
cylene xyanol  SIGMA X4126 
acrylamide SIGMA A9099 Toxic
N,N′-Methylenebisacrylamide SIGMA M7279  Toxic
Urea Boston Bioproducts P-940
Boric acid Mallinckrodt Chemicals 2549
Rapid Quench-Flow Instrument  Kintek Corp. RQF-3 
Kintek Explorer Kintek Corp. N/A
Kaleidagraph  Synergy Software N/A

Referências

  1. Kornberg, A., Baker, T. A. . DNA replication. , (1992).
  2. Hamdan, S. M., Richardson, C. C. Motors, switches, and contacts in the replisome. Annu Rev Biochem. 78, 205-243 (2009).
  3. Mendelman, L. V., Notarnicola, S. M., Richardson, C. C. Roles of bacteriophage T7 gene 4 proteins in providing primase and helicase functions in vivo. Proc Natl Acad Sci U S A. 89 (22), 10638-10642 (1992).
  4. Qimron, U., Lee, S. J., Hamdan, S. M., Richardson, C. C. Primer initiation and extension by T7 DNA primase. EMBO J. 25 (10), 2199-2208 (2006).
  5. Kato, M., Ito, T., Wagner, G., Richardson, C. C., Ellenberger, T. Modular architecture of the bacteriophage T7 primase couples RNA primer synthesis to DNA synthesis. Mol Cell. 11 (5), 1349-1360 (2003).
  6. Kusakabe, T., Richardson, C. C. Gene 4 DNA primase of bacteriophage T7 mediates the annealing and extension of ribo-oligonucleotides at primase recognition sites. J Biol Chem. 272 (19), 12446-12453 (1997).
  7. Lee, S. J., Zhu, B., Hamdan, S. M., Richardson, C. C. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7. Nucleic Acids Res. 38 (13), 4372-4383 (2010).
  8. Hernandez, A. J., Lee, S. J., Richardson, C. C. Primer release is the rate-limiting event in lagging-strand synthesis mediated by the T7 replisome. Proc Natl Acad Sci U S A. 113 (21), 5916-5921 (2016).
  9. Tabor, S., Richardson, C. C. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci U S A. 92 (14), 6339-6343 (1995).
  10. Kim, Y. T., Tabor, S., Bortner, C., Griffith, J. D., Richardson, C. C. Purification and characterization of the bacteriophage T7 gene 2.5 protein. A single-stranded DNA-binding protein. J Biol Chem. 267 (21), 15022-15031 (1992).
  11. Frick, D. N., Richardson, C. C. DNA primases. Annu Rev Biochem. 70, 39-80 (2001).
  12. Lee, S. J., Richardson, C. C. Essential lysine residues in the RNA polymerase domain of the gene 4 primase-helicase of bacteriophage T7. J Biol Chem. 276 (52), 49419-49426 (2001).
  13. Cao, W., De La Cruz, E. M. Quantitative full time course analysis of nonlinear enzyme cycling kinetics. Sci Rep. 3, 2658 (2013).
  14. Wang, M. H., Zhao, K. Y. A simple method for determining kinetic constants of complexing inactivation at identical enzyme and inhibitor concentrations. FEBS Lett. 412 (3), 425-428 (1997).
  15. Johnson, K. A. Fitting enzyme kinetic data with KinTek Global Kinetic Explorer. Methods Enzymol. 467, 601-626 (2009).
  16. Johnson, K. A. A century of enzyme kinetic analysis, 1913. FEBS Lett. 587 (17), 2753-2766 (2013).
  17. Biswas, T., Resto-Roldan, E., Sawyer, S. K., Artsimovitch, I., Tsodikov, O. V. A novel non-radioactive primase-pyrophosphatase activity assay and its application to the discovery of inhibitors of Mycobacterium tuberculosis primase DnaG. Nucleic Acids Res. 41 (4), e56 (2013).
  18. Sanyal, G., Doig, P. Bacterial DNA replication enzymes as targets for antibacterial drug discovery. Expert Opin Drug Discov. 7 (4), 327-339 (2012).
check_url/pt/55312?article_type=t

Play Video

Citar este artigo
Hernandez, A. J., Richardson, C. C. Kinetics of Lagging-strand DNA Synthesis In Vitro by the Bacteriophage T7 Replication Proteins. J. Vis. Exp. (120), e55312, doi:10.3791/55312 (2017).

View Video