Summary

Доступ к ценным Лиганд Опоры для переходных металлов: Модифицированная, Intermediate Scale Получение 1,2,3,4,5-Pentamethylcyclopentadiene

Published: March 20, 2017
doi:

Summary

Reliable, intermediate scale preparation of 1,2,3,4,5-pentamethylcyclopentadiene (Cp*H) is presented. The revised protocol for the synthesis and purification of the ligand minimizes the need for specialized laboratory equipment while simplifying reaction workups and product purification. Use of Cp*H in the synthesis of [Cp*MCl2]2 complexes (M = Ru, Ir) is also described.

Abstract

A reliable, intermediate scale preparation of 1,2,3,4,5-pentamethylcyclopentadiene (Cp*H) is presented, based on modifications of existing protocols that derive from initial 2-bromo-2-butene lithiation followed by acid mediated dienol cyclization. The revised synthesis and purification of the ligand avoids the use of mechanical stirring while still permitting access to significant quantities (39 g) of Cp*H in good yield (58%). The procedure offers other additional benefits, including a more controlled quench of excess lithium during the production of the intermediate heptadienols and a simplified isolation of Cp*H of sufficient purity for metallation with transition metals. The ligand was subsequently used to synthesize [Cp*MCl2]2 complexes of both iridium and ruthenium to demonstrate the utility of the Cp*H prepared and purified by our method. The procedure outlined herein affords substantial quantities of a ubiquitous ancillary ligand support used in organometallic chemistry while minimizing the need for specialized laboratory equipment, thus providing a simpler and more accessible entry point into the chemistry of 1,2,3,4,5-pentamethylcyclopentadiene.

Introduction

Since the discovery and structural elucidation of ferrocene in the 1950s,1,2,3,4 cyclopentadienyl (Cp) substituted ligands have played a vital role in the development of organometallic chemistry. These ligands have served as versatile ancillary supports for a range of metals, leading to studies of unusual structure and bonding,5,6,7 the activation and functionalization of small molecules,8,9,10,11,12,13 and catalysis, including olefin polymerization.14,15

The 1,2,3,4,5-pentamethylcyclopentadienyl (Cp*) anion has proven to be a particularly valuable ligand in transition and main group metal chemistry, as the methyl groups impart greater steric protection, increased electron donation by the anionic ligand, and block potential activation of the cyclopentadienyl ring.16,17 The Cp* ligand remains relevant even today, as the anion has recently been utilized to support H/D exchange by Ir(III),18 hydride transfer by Rh,19 and conjugate aminations mediated by Ti(III).20

Our interest in the Cp* ligand stems from the desire to access reactive sources of cobalt(I) for use in small molecule activation.21 These studies have resulted in the generation of both Cp*CoI and Cp*CoIL (L = N-heterocyclic carbene) equivalents for use in sp3 and sp2 C-H bond oxidative addition.22,23,24 As access to our Cp*Co(II) starting materials necessitate significant quantities of 1,2,3,4,5-pentamethylcyclopentadiene, we desired a multigram synthesis of Cp*H, given the substantial commercial cost of the ligand.

Two major methods currently exist for the large scale preparation of Cp*H, each of which presents inherent technical challenges. A procedure developed by Marks and coworkers involves a two-step synthesis of 2,3,4,5-tetramethylcyclopent-2-enone followed by installation of the final methyl group using methyl lithium.25 The synthesis is described on a massive scale, using a 12 L reaction vessel and mechanical stirring, while also requiring sustained low temperature cooling at 0 °C for four days.

An alternative procedure originally developed by Bercaw and coworkers,26 and later adapted by Marks,27 utilizes in situ generation of an alkenyl lithium for nucleophilic attack of ethyl acetate to produce an isomeric mixture of 3,4,5-trimethyl-2,5-heptadien-4-ols followed by acid mediated cyclization to provide Cp*H. The initial reports of this method were performed on a large (3-5 L) scale and required mechanical stirring. In addition, a significant excess of lithium metal was used, complicating quenching and subsequent workup of the intermediate heptadienols. A subsequent revision of the procedure scales down the reaction and the amount of lithium,28 but safe quenching of the reaction mixture remains an issue. Reproducibility in the initiation of the alkenyl lithium, due to differences in lithium source and purity or dryness of the 2-bromo-2-butene reactant are further noted concerns. Given these issues with the commonly used procedures for preparing Cp*H, we looked to develop better access to the ligand on an intermediate scale (30-40 g) which would circumvent use of specialty laboratory glassware and equipment, improve reaction reproducibility and safety, and simplify workup and ligand purification.

Here we report that synthesis of 1,2,3,4,5-pentamethylcyclopentadiene, based on modifications of the existing procedure developed by Bercaw and coworkers. The revised synthesis and purification of the ligand accomplishes the major goals outlined above, while permitting access to substantial amounts (39 g) of Cp*H in good yield (58%). The procedure offers other additional benefits, including a more controlled quench of excess lithium during the production of the intermediate heptadienols and a simplified isolation of Cp*H of adequate purity for subsequent metallation with transition metals. To demonstrate the utility of the prepared ligand, it was used to synthesize two [Cp*MCl2]2 (M = Ir, Ru) complexes. The revised protocol outlined below complements existing procedures and provides a simpler and more accessible entry point into the chemistry of a ubiquitous ancillary ligand support in organometallic chemistry.

Protocol

1. Synthesis of an Isomeric Mixture of 3,4,5-Trimethyl-2,5-heptadien-4-ols Fill an oven dried, 500 mL beaker with 200 mL of hexanes and cover with an oven dried watch glass. In an empty hood, use clean scissors to cut half inch pieces of lithium wire. Wipe each lithium piece on a paper towel to remove excess mineral oil, until all oil appears to be removed from the metal's surface, and place in the beaker containing hexanes. Fill an oven dried, 250 mL beaker with 10…

Representative Results

The protocol described above for Cp*H synthesis relies on modification of the three step procedure developed by Bercaw and coworkers and modified by Marks (Figure 1). The air sensitive alkenyl lithium is prepared in situ from a mixture of cis and trans-2-butene via a lithium/halogen exchange reaction and is subsequently quenched with ethyl acetate to prepare an isomeric mixture of heptadienols. The mixture can be used without further purificatio…

Discussion

During preparation of the heptadienol mixture, it is important to clean the lithium prior to initiating the reaction with the 2-bromo-2-butene. This is accomplished by wiping off residual mineral oil used for storage on paper towels, to the point that the oil appears fully removed from the surface, and by dissolving any remaining oil in the beaker of hexanes. The hexanes were used as received and not further dried before use in the procedure. Because of both the large scale of the reaction and an excess of lithium used, …

Declarações

The authors have nothing to disclose.

Acknowledgements

We are grateful to the National Science Foundation (CHE-1300508) and Mount St. Mary’s University (Startup and Summer Faculty Development) for generous support of this work. Ben Rupert (University of Delaware, Mass Spectrometry Facility) is acknowledged for LIFDI mass spectral analyses.

Materials

Materials
Lithium wire (in mineral oil) Aldrich 278327-100G >98%
2-bromo-2-butene (mixture of cis/trans isomers) Acros 200016-364   98%, dried over molecular sieves from an oven overnight before use
Hexanes Millipore HX0299-3 GR ACS, used as received
Ethyl actetate Millipore EX0240-3 GR ACS, dried over molecular sieves from an oven overnight before use
Ammonium chloride Aldrich 213330-2.5kg ACS Reagent
Diethyl ether Millipore EX0190-5 GR ACS, collected from a solvent purification system before use
Magnesium sulfate Aldrich 793612-500g Anhydrous, reagent grade
p-toluene sulfonic acid monohydrate Fisher A320-500 ACS Certified
Sodium bicarbonate Fisher 5233-500 ACS Certified
Sodium carbonate Amresco 0585-500g
Ruthenium (III) chloride trihydrate Pressure Chemical 4750 40% Metal
Iridium (III) chloride hydrate Pressure Chemical 5730 53% Metal
Methanol Avantor 3016-22 AR ACS, distilled from Mg before use
Pentane J. T. Baker T007-09 >98%, dried with a solvent purification system before use
Chloroform-d Aldrich 151823-150G 99.8 atom % D
Molecular sieves 4Å  Aldrich 208590-1KG dried in an oven at 140 °C before use 
Celite 545 Acros AC34967-0025 dried in an oven at 140 °C before use 
Name Company Catalog Number Comments
Equipment
Schlenk line, with vacuum and inert gas manifolds Custom NA Used in Preps 1-4
Solvent transfer manifold Chemglass AF-0558-01 Used in 2.2
Airfree filter funnel Chemglass AF-0542-22 Used in 3.1.3
Glovebox Vacuum Atmospheres OMNI Used in 3.2.2

Referências

  1. Kealy, T. J., Pauson, P. L. A new type of organo-iron compound. Nature. 168, 1039-1040 (1951).
  2. Wilkinson, G., Rosenblum, M., Whiting, M. C., Woodward, R. B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc. 74, 2125-2126 (1952).
  3. Fischer, E. O., Pfab, W. Z. Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Z. Naturforsch. 76, 377-379 (1952).
  4. Pauson, P. L. Ferrocene-how it all began. J. Organomet. Chem. 637-639, 3-6 (2001).
  5. Lauher, J. W., Hoffmann, R. Structure and chemistry of bis(cyclopentadienyl)-MLn complexes. J. Am. Chem. Soc. 98, 1729-1742 (1976).
  6. Resa, I., Carmona, E., Gutierrez-Puebla, E., Monge, A. Decamethyldizincocene, a stable compound of Zn(I) with a Zn-Zn bond. Science. 305, 1136-1138 (2004).
  7. Brintzinger, H., Bercaw, J. E. Nature of so-called titanocene, (C10H10Ti)2. J. Am. Chem. Soc. 92, 6182-6185 (1970).
  8. King, R. B. Some applications of metal carbonyl anions in the synthesis of unusual organometallic compounds. Acc. Chem. Res. 3, 417-427 (1970).
  9. Chirik, P. J. Group 4 transition metal sandwich complexes: still fresh after almost 60 years. Organometallics. 29, 1500-1517 (2010).
  10. Bengali, A. A., Schultz, R. H., Moore, C. B., Bergman, R. G. Activation of the C-H bonds in neopentane and neopentane-d12 by (η5-C5(CH3)5)Rh(CO)2: Spectroscopic and temporal resolution of rhodium-krypton and rhodium-alkane complex intermediates. J. Am. Chem. Soc. 116, 9585-9589 (1994).
  11. Shima, T., Hu, S., Luo, G., Kang, X., Luo, Y., Hou, Z. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science. 340, 1549-1552 (2013).
  12. Negishi, E. -. I., Takahashi, T. Alkene and alkyne complexes of zirconocene. Their preparation, structure, and novel transformations. Bull. Chem. Soc. Jpn. 71, 755-769 (1998).
  13. Rosenthal, U., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. The titancocene complex of bis(trimethylsilyl)acetylene: Synthesis, structure, and chemistry. Organometallics. 22, 884-900 (2003).
  14. Jordan, R. F., Bradley, P. K., LaPointe, R. E., Taylor, D. F. Cationic zirconium catalysts for carbon-carbon bond forming chemistry. New J. Chem. 14, 505-511 (1990).
  15. Ewen, J. A. Symmetry rules and reaction mechanisms of Ziegler-Natta catalysts. J. Mol. Catal. 128, 103-109 (1998).
  16. Manriquez, J. M., Bercaw, J. E. Preparation of a dinitrogen complex of bis(pentamethylcyclopentadienyl)zirconium(II). Isolation and protonation leading to the stoichiometric reduction of dinitrogen to hydrazine. J. Am. Chem. Soc. 96, 6229-6230 (1974).
  17. Brintzinger, H. H., Bercaw, J. E. Bis(pentamethylcyclopentadienyl)titanium(II). Isolation and reactions with hydrogen, nitrogen, and carbon monoxide. J. Am. Chem. Soc. 93, 2045-2046 (1971).
  18. Lehman, M. C., Gary, J. B., Boyle, P. D., Sanford, M. S., Ison, E. A. Effect of solvent and ancillary ligands on the catalytic H/D exchange reactivity of Cp*IrIII(L) complexes. ACS Catal. 3, 2304-2310 (2013).
  19. Pitman, C. L., Finster, O. N. L., Miller, A. J. M. Cyclopentadiene-mediated hydride transfer from rhodium complexes. Chem. Commun. 52, 9105-9108 (2016).
  20. Tarantino, K. T., Miller, D. C., Callon, T. A., Knowles, R. R. Bond-weakening catalysis: Conjugate aminations enabled by the soft homolysis of strong N-H bonds. J. Am. Chem. Soc. 137, 6440-6443 (2015).
  21. Bolig, A. D., Brookhart, M. Activation of sp3 C-H bonds with cobalt(I): Catalytic synthesis of enamines. J. Am. Chem. Soc. 129, 14544-14545 (2007).
  22. Hung-Low, F., Tye, J. W., Cheng, S., Bradley, C. A. sp2 C-H activation of dimethyl fumarate by a [(Cp*Co)2-µ-(η4:η4-toluene)] complex. Dalton Trans. 41 (26), 8190-8197 (2012).
  23. Hung-Low, F., Krogman, J. P., Tye, J. W., Bradley, C. A. Development of more labile low electron count Co(I) sources: mild, catalytic functionalization of activated alkanes using a [(Cp*Co)2-µ-(η4:η4-arene)] complex. Chem. Commun. 48 (3), 368-370 (2012).
  24. Andjaba, J. M., Tye, J. W., Yu, P., Pappas, I., Bradley, C. A. Cp*Co(IPr): synthesis and reactivity of an unsaturated Co(I) complex. Chem. Commun. 52, 2469-2472 (2016).
  25. Fendrick, C. M., Schertz, L. D., Mintz, E. A., Marks, T. J. Large-scale synthesis of 1,2,3,4,5-pentamethylcyclpentadiene. Inorg. Synth. 29, 193-198 (1992).
  26. Threlkel, R. S., Bercaw, J. E. A Convenient synthesis of alkyltetramethylcyclopentadienes and phenyltetramethylcyclopentadiene. J. Organomet. Chem. 136, 1-5 (1977).
  27. Manriquez, J. M., Fagan, P. J., Schertz, L. D., Marks, T. J. 1,2,3,4,5-pentamethylcyclopentadiene. Inorg Synth. 28, 317-320 (1990).
  28. Threlkel, R. S., Bercaw, J. E., Seidler, P. F., Stryker, J. M., Bergman, R. G. 1,2,3,4,5-pentamethylcyclopentadiene. Org. Synth. 65, (1987).
  29. Koelle, U., Kossakowski, J. Di-µ-chloro-bis[(η5-pentachlororuthenium(III)], [Cp*RuCl2]2 and Di-µ-methoxo-bis(η5-pentamethylcyclomethylcyclopentadienyl) diruthenium(II), [Cp*RuOMe]2. Inorg. Synth. 29, 225-228 (1992).
  30. White, C., Yates, A., Maitlis, P. M. η5-pentamethylcyclopentadienyl)rhodium and -iridium compounds. Inorg. Synth. 29, 228-234 (1992).
  31. Andersen, R. A., Blom, R., Boncella, J. M., Burns, C. J., Volden, H. V. The thermal average molecular structures of bis(pentamethylcyclopentadienyl)magnesium(II), -calcium(II), and -ytterbium(II) in the gas phase. Acta Chem. Scand. 41A, 24-35 (1987).
  32. Gross, J. H., et al. Liquid injection field desorption/ionization of reactive transition metal complexes. Anal. Bioanal. Chem. 386 (1), 52-58 (2006).
check_url/pt/55366?article_type=t

Play Video

Citar este artigo
Call, Z., Suchewski, M., Bradley, C. A. Accessing Valuable Ligand Supports for Transition Metals: A Modified, Intermediate Scale Preparation of 1,2,3,4,5-Pentamethylcyclopentadiene. J. Vis. Exp. (121), e55366, doi:10.3791/55366 (2017).

View Video