Summary

Generation af kationiske Nanoliposomes til effektiv levering af In Vitro transskriberet Messenger RNA

Published: February 01, 2019
doi:

Summary

Her beskriver vi en protokol for generation af kationiske nanoliposomes, som er baseret på metoden tør-film og kan bruges til sikker og effektiv levering af in vitro- transskriberet messenger RNA.

Abstract

Udviklingen af messenger RNA (mRNA)-baseret terapi til behandling af forskellige sygdomme bliver mere og mere vigtig på grund af positive egenskaber af in vitro transskriberet (IVT) mRNA. Ved hjælp af IVT mRNA, kan være fremkaldt de novo -syntesen af en ønskede protein uden ændring af målcellen fysiologiske tilstand. Derudover kan proteinsyntese styres netop på grund af forbigående effekten af IVT mRNA.

For den effektive Transfektion af celler, kan nanoliposomes (NLps) repræsenterer en sikker og effektiv levering køretøj for terapeutisk mRNA. Denne undersøgelse beskriver en protokol for at generere sikre og effektive kationiske NLps bestående af DC-kolesterol og 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) som en levering vektor for IVT mRNA. NLps har en defineret størrelse, en homogen fordeling og en høj compleksering kapacitet og kan produceres ved hjælp af metoden tør-film. Desuden præsenterer vi forskellige testsystemer for at analysere deres kompleks og Transfektion efficacies ved hjælp af syntetiske forbedret grøn fluorescerende proteiner (eGFP) mRNA, samt deres effekt på cellernes levedygtighed. Samlet set giver præsenteres protokollen en effektiv og sikker tilgang til mRNA kompleks, som kan fremme og forbedre forvaltningen af terapeutiske mRNA.

Introduction

Brug af modificerede mRNA for terapeutisk anvendelse har vist stort potentiale i de sidste par år. I hjerte-kar-, provokerende og monogenetic sygdomme, samt i udviklingen af vacciner, er mRNA en lovende terapeutisk agent1.

Protein substitutionsterapi med mRNA tilbyder flere fordele i forhold til den klassiske genterapi, som er baseret på DNA Transfektion i target celler2. Funktionen mRNA indleder direkte i cytosol. Selvom plasmid DNA (pDNA), en konstruktion af dobbelt-strenget, cirkulært kan DNA indeholdende en promotor-regionen og en gensekvens, kodning den terapeutiske protein3, også handlinger i cytosol, det kun indgå i celler, som går gennem mitosen på tidspunktet for Transfektion. Dette reducerer antallet af transfekteret celler i væv1,4. Specifikt er Transfektion af væv med svag mitose aktivitet, såsom hjerte celler, vanskeligt5. I modsætning til pDNA forekomme Transfektion og oversættelse af mRNA i mitotiske og ikke-mitotiske celler i væv1,6. Viral integration af DNA i host-genom kan komme med mutagene virkninger eller immun reaktioner7,8, men efter Transfektion af celler med en protein-kodning mRNA, de novo -syntesen af det ønskede protein starter autonomt9,10. Derudover kan proteinsyntese justeres præcist til patientens behov gennem individuelle doser, uden at gribe ind i genomet og risikere mutagene virkninger11. Den immun aktivering potentiale af syntetisk genererede mRNA kunne sænkes drastisk ved hjælp af pseudo-uridine og 5′-methylcytidine i stedet for uridine og cytidine12. Pseudo-uridine modificerede mRNA har også vist sig at have en øget biologiske stabilitet og en betydeligt højere translationel kapacitet13.

For at kunne drage fordel af de lovende egenskaber af mRNA-baseret terapi i kliniske anvendelser, er det vigtigt at skabe et passende køretøj til transport af mRNA ind i cellen. Dette køretøj skal være forsynet med ikke-toksiske egenskaber i in vitro og i vivo, beskytte mRNA mod nukleasen-nedbrydning og give tilstrækkelig cellulære optagelse for en langvarig ledighed og oversættelse af mRNA14.

Blandt alle mulige carrier typer for i vivo drug delivery, såsom kulstof-nanorør, quantum dots og Liposomer, sidstnævnte har været studeret mest15,16. Liposomer er vesikler bestående af en lipid tolagede10. De er amphiphilic med en hydrofob og en hydrofil sektion, og gennem selvstændig ordningen af disse molekyler, en sfærisk dobbelt lag er dannet17. Inde i Liposomer, kan terapeutiske agenter eller narkotika være indkapslet og dermed beskyttet mod Enzymatisk nedbrydning18. Liposomer som indeholder N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chlorid (DOTMA)19, [1,2-bis (oleoyloxy) -3-(trimethylammonio) propan] (DOTAP)20, og dioctadecylamidoglycylspermine (hunde)21, eller DC-kolesterol22, er godt præget og ofte benyttes til cellulære Transfektion med DNA eller RNA.

Kationiske Liposomer består af et positivt ladede lipid og et tomt phospholipid23. Transfektion via kationiske Liposomer er en af de mest almindelige metoder til transport af nukleinsyrer i celler24,25. Kationiske lipid partikler danner komplekser med negativt ladede fosfat-grupper i rygraden i nukleinsyre molekyler26. Disse såkaldte lipoplexes tillægger overfladen af cellemembranen og komme ind i cellen via endocytose eller endocytose-lignende-mekanismer27.

I 1989, Malone mfl. korrekt beskrevet kationiske lipid-medieret mRNA Transfektion28. Men ved hjælp af en blanding af DOTMA og 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), gruppen fandt at DOTMA manifesteret cytotoksiske virkninger28. Derudover viste Zohra et al. , at DOTAP (1,2-dioleoyloxy-3-trimethylammoniumformiat-propan chlorid) kan bruges som et mRNA Transfektion reagens29. For den effektive Transfektion af celler, bør DOTAP anvendes i kombination med andre reagenser, såsom fibronektin29 eller DOPE30. Hidtil har var DOTMA den første kationiske lipid på markedet anvendes til gen levering31. Andre lipider er brugt som terapeutisk luftfartsselskaber eller testes i forskellige stadier af kliniske forsøg, (f.eks. EndoTAG-I, som indeholder DOTAP som lipid transportør), undersøges i øjeblikket i et fase II kliniske forsøg32.

Dette arbejde beskriver en protokol for generation af NLps indeholdende DC-kolesterol og DOPE. Denne metode er nem at udføre og giver mulighed for generation af NLps i forskellige størrelser. Det generelle mål med NLp generation ved hjælp af metoden tør-film er at skabe Liposomer til mRNA kompleks, således at effektiv og biokompatible celle Transfektion in vitro-14,33.

Protocol

1. generation af kationiske Nanoliposomes (figur 1) Opløse lipider DC-kolesterol (3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] kolesterol hydrochlorid) og DOPE (dioleoyl phosphatidylethanolamin), leveres som et pulver i chloroform at opnå en endelig koncentration på 25 mg/mL.Bemærk: Gemme de opløste lipider ved-20 ° C. Arbejde med 25 mg/mL stamopløsning af både lipider. Mix 40 µL af den opløste DC-kolesterol og 80 µL af den opløste DOPE i et glas kolb…

Representative Results

Ved hjælp af protokollen som beskrevet, blev NLps bestående af lipider DC-kolesterol og DOPE udarbejdet ved hjælp af metoden tør-film (figur 1). Under forberedelsen viser nanoliposome løsning forskellige stadier i turbiditet (figur 2). Indkapsling effekten af NLps kan derefter analyseres efter indkapsling af 1 µg for eGFP-kodning mRNA ved at analysere den gratis m…

Discussion

Den præsenterede protokol beskriver generation af NLps med høj indkapsling effekten for syntetisk modificerede mRNA, samt den pålidelige Transfektion af celler i vitro. Desuden, NLps sikre frigivelsen af mRNA, som til gengæld er oversat til en funktionel proteiner inde i cellerne. Derudover transfections ved hjælp af NLps kan udføres i regelmæssig celle medium, resulterer i høj celle viabilities under Transfektion, og vare op til tre dage efter Transfektion.

For at bruge mRNA …

Declarações

The authors have nothing to disclose.

Acknowledgements

Ingen

Materials

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) AppliChem, Darmstadt, Germany A2231
(3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-Cholesterol) Avanti, Alabama, USA 700001
4 ′,6-diamidino-2-phenylindole (DAPI) Thermo Fisher Scientific, Darmstadt, Germany D1306
BD FACScan system BD Biosciences, Heidelberg, Germany
Cell Fix (10x) BD Biosciences, Heidelberg, Germany 340181
Chloroform Merck, Darmstadt, Germany 102445
Dimethyl sulfoxid (DMSO) Serva Electrophoresis GmbH, Heidelberg, Germany 20385.02
Dioleoyl phosphatidylethanolamine (DOPE) Avanti, Alabama, USA 850725
Fluorescence microscope Zeiss Axio, Oberkochen, Germany
Lipofectamine 2000 Thermo Fisher Scientific, Darmstadt, Germany 11668019
Mini extruder Avanti, Alabama, USA
Nuclease-free water Qiagen, Hilden, Germany 129114
Opti-Mem Thermo Fisher Scientific, Darmstadt, Germany 11058021
PBS buffer (w/o Ca2+/Mg2+) Thermo Fisher Scientific, Darmstadt, Germany 70011044
Quant-iT Ribo Green RNA reagent kit Thermo Fisher Scientific, Darmstadt, Germany Q33140
RPMI (w/o phenol red) Thermo Fisher Scientific, Darmstadt, Germany 11835030
Silica gel Carl Roth, Karlsruhe, Germany P077
Trypsin/EDTA (0.05%) Thermo Fisher Scientific, Darmstadt, Germany 25300054
HotStar HiFidelity Polymerase Kit Qiagen, Hilden, Germany 202602
QIAquick PCR Purification Kit Qiagen, Hilden, Germany 28104

Pseudouridine-5'-Triphosphate (Ψ-UTP)
TriLink Biotechnologies, San Diego, USA N-1019
5-Methylcytidine-5'-Triphosphate (Methyl-CTP) TriLink Biotechnologies, San Diego, USA N-1014
Cyanine 3-CTP PerkinElmer, Baesweiler, Germany NEL580001EA
RNeasy Mini Kit Qiagen, Hilden, Germany 74104
MEGAscript T7 Transcription Kit Thermo Fisher Scientific, Darmstadt, Germany AM1333
3´-O-Me-m7G(5')ppp(5')G RNA Cap Structure Analog New England Biolabs, Ipswich, USA S1411L
Antarctic Phosphatase New England Biolabs, Ipswich, USA M0289S
Agarose Thermo Fisher Scientific, Darmstadt, Germany 16500-500
GelRed Biotium, Fremont, USA 41003
peqGOLD DNA ladder mix VWR, Pennsylvania, USA 25-2040
Invitrogen 0.5-10kb RNA ladder Fisher Scientific, Göteborg,
Sweden
11528766

Referências

  1. Sahin, U., Kariko, K., Tureci, O. mRNA-based therapeutics–developing a new class of drugs. Nature Reviews Drug Discovery. 13 (10), 759-780 (2014).
  2. Yamamoto, A., Kormann, M., Rosenecker, J., Rudolph, C. Current prospoects for mRNA gene delivery. European Journal of Pharmaceutics and Biopharmaceutics. 71 (3), 484-489 (2009).
  3. Williams, P. D., Kingston, P. A. Plasmid-mediated gene therapy for cardiovascular disease. Cardiovascular Research. 91 (4), 565-576 (2011).
  4. Devoldere, J., Dewitte, H., De Smedt, S. C., Remaut, K. Evading innate immunity in nonviral mRNA delivery: don’t shoot the messenger. Drug Discovery Today. 21 (1), 11-25 (2016).
  5. Laguens, R. P., Crottogini, A. J. Cardiac regeneration: the gene therapy approach. Expert Opinion on Biological Therapy. 9 (4), 411-425 (2009).
  6. Hadas, Y., Katz, M. G., Bridges, C. R., Zangi, L. Modified mRNA as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 9 (1), (2017).
  7. Zohra, F. T., Chowdhury, E. H., Akaike, T. High performance mRNA transfection through carbonate apatite-cationic liposome conjugates. Biomaterials. 30 (23-24), 4006-4013 (2009).
  8. Youn, H., Chung, J. -. K. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opinion on Biological Therapy. 15 (9), 1337-1348 (2015).
  9. Avci-Adali, M., et al. Optimized conditions for successful transfection of human endothelial cells with in vitro synthesized and modified mRNA for induction of protein expression. Journal of Biological Engineering. 8 (1), 8 (2014).
  10. Akbarzadeh, A., et al. Liposome: classification, preparation, and applications. Nanoscale Research Letters. 8 (1), 102 (2013).
  11. Michel, T., Wendel, H. -. P., Krajewski, S., Kormann, M. Next-generation Therapeutics: mRNA as a Novel Therapeutic Option for Single-gene Disorders. Modern Tools for Genetic Engineering. , 3-20 (2016).
  12. Karikó, K., et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy: The Journal of the American Society of Gene Therapy. 16 (11), 1833-1840 (2008).
  13. Anderson, B. R., et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Research. 38 (17), 5884-5892 (2010).
  14. Michel, T., et al. Cationic Nanoliposomes Meet mRNA: Efficient Delivery of Modified mRNA Using Hemocompatible and Stable Vectors for Therapeutic Applications. Molecular Therapy – Nucleic Acids. 8 (September), 459-468 (2017).
  15. Tran, M. A., Watts, R. J., Robertson, G. P. Use of Liposomes as Drug Delivery Vehicles for Treatment of Melanoma. Pigment Cell & Melanoma Research. 22 (4), 388-399 (2009).
  16. Immordino, M. L., Dosio, F., Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine. 1 (3), 297-315 (2006).
  17. Ross, P. C., Hui, S. W. Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Therapy. 6 (4), 651-659 (1999).
  18. Xing, H., Hwang, K., Lu, Y. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications. Theranostics. 6 (9), 1336-1352 (2016).
  19. Felgner, P. L., et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America. 84 (21), 7413-7417 (1987).
  20. Leventis, R., Silvius, J. R. Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochimica et Biophysica Acta. 1023 (1), 124-132 (1990).
  21. Behr, J. P., Demeneix, B., Loeffler, J. P., Perez-Mutul, J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proceedings of the National Academy of Sciences of the United States of America. 86 (18), 6982-6986 (1989).
  22. Gao, X., Huang, L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochemical and Biophysical Research Communications. 179 (1), 280-285 (1991).
  23. Martin, B., et al. The design of cationic lipids for gene delivery. Current Pharmaceutical Design. 11 (3), 375-394 (2005).
  24. Yang, S. Y., et al. Comprehensive study of cationic liposomes composed of DC-Chol and cholesterol with different mole ratios for gene transfection. Colloids and Surfaces B: Biointerfaces. 101, 6-13 (2013).
  25. Bennett, M. J., Nantz, M. H., Balasubramaniam, R. P., Gruenert, D. C., Malone, R. W. Cholesterol enhances cationic liposome-mediated DNA transfection of human respiratory epithelial cells. Bioscience Reports. 15 (1), 47-53 (1995).
  26. Son, K. K., Patel, D. H., Tkach, D., Park, A. Cationic liposome and plasmid DNA complexes formed in serum-free medium under optimum transfection condition are negatively charged. Biochimica et Biophysica Acta. 1466 (1-2), 11-15 (2000).
  27. Lonez, C., Vandenbranden, M., Ruysschaert, J. M. Cationic lipids activate intracellular signaling pathways. Advanced Drug Delivery Reviews. 64 (15), 1749-1758 (2012).
  28. Malone, R. W., Felgner, P. L., Verma, I. M. Cationic liposome-mediated RNA transfection. Proceedings of the National Academy of Sciences of the United States of America. 86 (16), 6077-6081 (1989).
  29. Zohra, F. T., Maitani, Y., Akaike, T. mRNA delivery through fibronectin associated liposome-apatite particles: a new approach for enhanced mRNA transfection to mammalian cell. Biological and Pharmaceutical Bulletin. 35 (1), 111-115 (2012).
  30. Rejman, J., Tavernier, G., Bavarsad, N., Demeester, J., De Smedt, S. C. mRNA transfection of cervical carcinoma and mesenchymal stem cells mediated by cationic carriers. Journal of Controlled Release. 147 (3), 385-391 (2010).
  31. Balazs, D. A., Godbey, W. Liposomes for use in gene delivery. Journal of Drug Delivery. 2011, 326497 (2011).
  32. Bulbake, U., Doppalapudi, S., Kommineni, N., Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 9 (2), (2017).
  33. Abraham, M. K., et al. Nanoliposomes for Safe and Efficient Therapeutic mRNA Delivery: A Step Toward Nanotheranostics in Inflammatory and Cardiovascular Diseases as well as Cancer. Nanotheranostics. 1 (2), 154-165 (2017).
  34. Avci-Adali, M., et al. In vitro synthesis of modified mRNA for induction of protein expression in human cells. Journal of Visualized Experiments. 93 (93), e51943 (2014).
  35. Yang, S., Chen, J., Zhao, D., Han, D., Chen, X. Comparative study on preparative methods of DC-Chol/DOPE liposomes and formulation optimization by determining encapsulation efficiency. International Journal of Pharmaceutics. 434 (1-2), 155-160 (2012).
  36. Caracciolo, G., Amenitsch, H. Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. European Biophysics Journal. 41 (10), 815-829 (2012).
  37. Farhood, H., Serbina, N., Huang, L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochimica et Biophysica Acta. 1235 (2), 289-295 (1995).
  38. Zhang, Y., et al. DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. International Journal of Pharmaceutics. 390 (2), 198-207 (2010).
  39. Klein, R. A. The detection of oxidation in liposome preparations. Biochimica et Biophysica Acta. 210 (3), 486-489 (1970).
  40. Ming-Ren Toh, G. N. C. C. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian Journal of Pharmaceutical Sciences. 8 (2), 88-95 (2013).
  41. Torchilin, V. P., Omelyanenko, V. G., Lukyanov, A. N. Temperature-dependent aggregation of pH-sensitive phosphatidyl ethanolamine-oleic acid-cholesterol liposomes as measured by fluorescent spectroscopy. Analytical Biochemistry. 207 (1), 109-113 (1992).
  42. Rabinovich, P. M., Weissman, S. M. Cell engineering with synthetic messenger RNA. Methods in Molecular Biology. 969, 3-28 (2013).
  43. Ishida, T., Harashima, H., Kiwada, H. Liposome clearance. Bioscience Reports. 22 (2), 197-224 (2002).
  44. Freise, J., Muller, W. H., Brolsch, C., Schmidt, F. W. “In vivo” distribution of liposomes between parenchymal and non parenchymal cells in rat liver. Biomedicine. 32 (3), 118-123 (1980).
  45. Roerdink, F., Dijkstra, J., Hartman, G., Bolscher, B., Scherphof, G. The involvement of parenchymal, Kupffer and endothelial liver cells in the hepatic uptake of intravenously injected liposomes. Effects of lanthanum and gadolinium salts. Biochimica et Biophysica Acta. 677 (1), 79-89 (1981).
  46. Wang, X., et al. Dual-Targeted Theranostic Delivery of miRs Arrests Abdominal Aortic Aneurysm Development. Molecular Therapy. 26 (4), 1056-1065 (2018).
  47. Flierl, U., et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. Journal of Experimental Medicine. 212 (2), 129-137 (2015).
  48. Woodle, M. C. Controlling liposome blood clearance by surface-grafted polymers. Advanced Drug Delivery Reviews. 32 (1-2), 139-152 (1998).
  49. Sawant, R. R., Torchilin, V. P. Challenges in development of targeted liposomal therapeutics. The AAPS Journal. 14 (2), 303-315 (2012).
  50. Ewert, K. K., Evans, H. M., Bouxsein, N. F., Safinya, C. R. Dendritic cationic lipids with highly charged headgroups for efficient gene delivery. Bioconjugate Chemistry. 17 (4), 877-888 (2006).
  51. Elouahabi, A., Ruysschaert, J. M. Formation and intracellular trafficking of lipoplexes and polyplexes. Molecular Therapy. 11 (3), 336-347 (2005).
  52. Hoekstra, D., Rejman, J., Wasungu, L., Shi, F., Zuhorn, I. Gene delivery by cationic lipids: in and out of an endosome. Biochemical Society Transactions. 35 (Pt 1), 68-71 (2007).
  53. Lonez, C., Vandenbranden, M., Ruysschaert, J. M. Cationic liposomal lipids: from gene carriers to cell signaling. Progress in Lipid Research. 47 (5), 340-347 (2008).
  54. Filion, M. C., Phillips, N. C. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochimica et Biophysica Acta. 1329 (2), 345-356 (1997).
  55. Takano, S., Aramaki, Y., Tsuchiya, S. Physicochemical properties of liposomes affecting apoptosis induced by cationic liposomes in macrophages. Pharmaceutical Research. 20 (7), 962-968 (2003).
  56. Ciani, L., et al. DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery studied by circular dichroism and other biophysical techniques. Biophysical Chemistry. 127 (3), 213-220 (2007).
  57. Benson, H. A. Elastic Liposomes for Topical and Transdermal Drug Delivery. Methods in Molecular Biology. 1522, 107-117 (2017).
  58. Johler, S. M., Rejman, J., Guan, S., Rosenecker, J. Nebulisation of IVT mRNA Complexes for Intrapulmonary Administration. PLoS One. 10 (9), e0137504 (2015).
  59. Mays, L. E., et al. Modified Foxp3 mRNA protects against asthma through an IL-10-dependent mechanism. Journal of Clinical Investigation. 123 (3), 1216-1228 (2013).
  60. Kormann, M. S., et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology. 29 (2), 154-157 (2011).
check_url/pt/58444?article_type=t

Play Video

Citar este artigo
Michel, T., Link, A., Abraham, M., Schlensak, C., Peter, K., Wendel, H., Wang, X., Krajewski, S. Generation of Cationic Nanoliposomes for the Efficient Delivery of In Vitro Transcribed Messenger RNA. J. Vis. Exp. (144), e58444, doi:10.3791/58444 (2019).

View Video