Summary

微重力环境下高效太阳能氢气生产的实验方法

Published: December 03, 2019
doi:

Summary

最近在不来梅下降塔微重力环境中的光电半电池中实现了高效的太阳能-氢生产。这里,我们报告制造半导体电催化剂装置的实验程序,在落体胶囊的实验设置的细节和自由落体期间的实验序列。

Abstract

长期空间飞行和Cis-lunar研究平台需要一个可持续和轻型的生命支持硬件,可以在地球大气层之外可靠地使用。所谓的”太阳能燃料”装置,目前为地面应用而开发,旨在实现地球上的可持续能源经济,为国际空间上现有的空气振兴装置提供了有前途的替代系统站(ISS)通过光电化学分水和氢气生产。在重力降低的环境中,水(光-)电解的一个障碍是缺乏浮力,因此,气体气泡从电极表面释放受阻。这导致在电极表面附近形成气泡泡沫层,导致由于基材和产品与电极的转移量减少,导致欧姆电阻增加,细胞效率损失增加。最近,我们展示了在微重力环境下高效生产太阳能氢气,采用一种集成半导体-电催化剂系统,其类型为磷化钠作为光吸收器和电催化剂。通过纳米利用阴影纳米层光刻对电催化剂进行纳米结构,从而在光电极表面产生催化”热点”,可以克服气泡凝聚和质量转移的局限性,并展示出高效的氢气在减少引力的高电流密度下生产。在这里,实验细节描述了这些纳米结构装置的制剂,并进一步介绍了在9.3秒自由落体期间在不来梅下降塔实现的微重力环境中测试的程序。

Introduction

我们在地球上的大气层是通过氧光合作用形成的,这是一个有23亿年历史的过程,将太阳能转化为富含能量的碳氢化合物,释放氧气作为副产品,并使用水和CO2作为基质。目前,在半导体-电催化剂系统中,遵循催化和电荷转移的能能Z方案概念的人工光合系统,迄今的太阳对氢转换效率为19 %1、2、3。在这些系统中,半导体材料被用作光吸收剂,并涂有薄而透明的电催化剂层4。全球寻求使用氢和长链碳氢化合物的可再生能源系统,为替代燃料供应提供了极好的候选者,从而推动了该领域的密集研究。在长期空间飞行任务中也面临类似的障碍,因为不可能从地球上再补给资源。需要可靠的生命保障硬件,采用高效的空气振兴装置,每年为每位机组人员提供约310公斤的氧气,但不包括舱外活动5。一种高效的太阳能分水装置,能够产生氧气和氢气,或减少太阳能辅助的二氧化碳,在单片系统中,将为ISS目前采用的技术提供一条替代的、较轻的途径:空气振兴装置由一个带碱性电解器的分离系统、固体二氧化碳浓缩器和一个用于减少CO2的萨巴蒂埃反应堆组成。

前所未有的是,我们在微重力环境下实现了高效的太阳能-氢生产,在不来梅下降塔(德国ZARM)6的自由落体过程中,自由落体9.3s提供。利用p型磷化作为半导体光吸收剂7,8涂有纳米结构的电催化剂,我们克服了基板和产品质量转移的限制,从光电极表面和在光电极表面,这是一个障碍,在降低重力环境,由于缺乏浮力9,10。阴影纳米层光刻11、12直接在光电极表面的应用,使氧化铝催化”热点”的形成,防止了氢气气泡的凝聚和电极表面附近形成泡沫层。

本文提供p-InP光电极制备的实验细节,包括表面蚀刻和调理,然后应用阴影纳米圈光刻在电极表面和光电极位置纳米粒子通过聚苯乙烯球体。此外,还描述了不来梅投落塔滴舱的实验设置,并提供了自由落体9.3级实验序列的细节。每次跌落前后的样品安装和处理,以及滴落舱及其设备的准备,以操作照明源、电位器、快门控制和摄像机。

Protocol

1. p-InP 光电极的制备 使用单晶 p-InP (方向 (111 A),锌掺水浓度 5 × 1017厘米-3) 作为光吸收器。对于背部接触准备,在晶圆背面蒸发 4 nm Au、80 nm Zn 和 150 nm Au,并将其加热到 400°C 60 s。 应用 Ag 粘贴将欧米触点连接到薄板 Cu 导线上。将导线螺纹到玻璃管上,将样品封装起来,并使用黑色、耐化学性环氧树脂将其密封到玻璃管中。 为了去除原生氧化物,蚀?…

Representative Results

通过HCl中的循环极化对样品进行连续光电化学调理,在Br2/甲醇中蚀刻p-InP表面30s,在文献中得到了很好的证实和讨论(例如,由舒尔特和莱韦伦茨(2001)14、15)。蚀刻过程去除表面残留的原生氧化物(图2),HCl中的电化学循环进一步使细胞性能的填充系数显著增加,同时p-InP的平坦带移位从+0.56 V…

Discussion

对于光电极的制备,在使用氮气约 10 – 15 分钟之前,尽量减少蚀刻和调理过程之间的氧气暴露,并清除 0.5 M HCl 非常重要。样品经过调节后,可在15 mL锥形管中的氮气下储存几个小时,以便样品输送和/或聚苯乙烯颗粒掩膜的制备时间。为了实现电极基板上PS球体的均匀排列,在水面上形成可观察到的连续反光膜的PS球体必须连续屏蔽。一旦面膜形成,连续的紫光电极步骤应在2 – 3小时内进行。电极?…

Declarações

The authors have nothing to disclose.

Acknowledgements

K.B. 承认德国国家科学院利奥波迪纳研究金项目的资助,向LPDS 2016-06和欧洲航天局提供赠款。此外,她还要感谢利奥波德·萨默博士、高级概念小组、艾伦·道森、杰克·范龙博士、加博尔·米拉辛博士和罗伯特·林德纳博士(ESTEC)、罗伯特-扬·努尔达姆博士(注记)和哈里·格雷教授(加州理工学院)的大力支持。M.H.R.感谢内森·刘易斯教授(加州理工学院)的慷慨支持。K.B.和M.H.R.感谢加州理工学院贝克曼研究所和分子材料研究中心的支持。PhotoEChem团队非常认可德国航空航天中心(德国航空中心)为 50WM1848 项目提供的资金。此外,M.G. 还认可来自广东创新与创业团队项目的资助,该计划名为”光电器件光管理的质子纳米材料与量子点”(No. 2016ZT06C517)。此外,作者团队对ZARM团队的努力和支持给予充分肯定,包括迪特尔·比肖夫、托斯滕·卢茨、马蒂亚斯·迈耶、弗雷德·奥特肯、扬·西默斯、马丁·卡斯蒂略博士、马格达莱娜·索德博士和托尔本·科内曼博士。它还感谢与福田大学(前田大学)、松岛浩司教授(北海道大学)和斯洛博丹·米特罗维奇博士(林研究)进行的启发性讨论。

Materials

12.7 mm XZ Dovetail Translation Stage with Baseplate, M4 Taps (4 x) Thorlabs DT12XZ/M
Beam splitters (2 x) Thorlabs CM1-BS013 50:50 400-700nm
Beamsplitters (2 x) Thorlabs CM1-BS014 50:50 700-1100nm
Ohmic back contact: 4 nm Au, 80 nm Zn, 150 nm Au Out e.V., Berlin, Germany https://www.out-ev.de/english/index.html Company provides custom made ohmic back contacts
Glass tube, ca. 10 cm, inner diameter about 4 mm E.g., Gaßner Glasstechnik Custom made
p-InP wafers, orientation 111A, Zn doping concentration: 5 x 10^17 cm^-3 AXT Inc. Geo Semiconductor Ltd. Switzerland Custom made
Photoelectrochemical cell for terrestrial experiments E.g., glass/ materials workshop Custom made
Matrox 4Sight GPm (board computer) Matrox imaging Ivy Bridge, 7 x Cable Ace power I/O HRS 6p, open 10m, Power Adapter for Matrox 4sight GPm, Samsung 850 Pro 2,5" 1 TB, Solid State Drive in exchange for the 250Gb hard drive
2-propanol Sigma Aldrich I9516-500ML
35mm Kowa LM35HC 1" Sensor F1.4 C-mount (2 x) Basler AG
Acetone Sigma Aldrich 650501-1L
Ag/AgCl (3 M KCl) reference electrode WPI DRIREF-5
Aluminium breadboard, 450 mm x 450 mm x 12.7mm, M6 Taps (2 x) Thorlabs MB4545/M
Beaker, 100 mL VWR 10754-948
Black epoxy Electrolube ER2162
Bromine Sigma Aldrich 1.01945 EMD Millipore
Colour camera (2 x) Basler AG acA2040-25gc
Conductive silver epoxy MG Chemicals 8331-14G
Copper wire E.g., Sigma Aldrich 349224-150CM
Ethanol Sigma Aldrich 459844-500ML
Falcon tubes, 15 mL VWR 62406-200
Glove bags Sigma Aldrich Z530212
Hydrochloric acid (1 M) Sigma Aldrich H9892
Magnetic stirrer VWR 97042-626
Methanol Sigma Aldrich 34860-100ML-R
Microscope slides VWR 82003-414
MilliQ water
NIR camera (2 x) Basler AG acA1300-60gm
Nitrogen, grade 5N Airgas NI UHP300
Ø 1" Stackable Lens Tubes (6 x) Thorlabs SM1L03
O2 Plasma Facility
OEM Flange to SM Thread Adapters (4 x) Thorlabs SM1F2
Parafilm VWR 52858-000
Pasteur pipette VWR 14672-380
Perchloric acid (1 M) Sigma Aldrich 311421-50ML
Petri dish VWR 75845-546
Photoelectrochemical cell for microgravity experiments E.g., glass/ materials workshop
Polystyrene particles, 784 nm, 5 % (w/v) Microparticles GmbH 0.1-0.99 µm size (50 mg/ml): 10 ml, 15 ml, 50 ml
Potentiostats (2 x) Biologic SP-200/300
Pt counter electrode ALS-Japan 12961
Rhodium (III) chlorid Sigma Aldrich 520772-1G
Shutter control system (2 x)
Silicon reference photodiode Thorlabs FDS1010
Sodium chlorid Sigma Aldrich 567440-500GM
Stands and rods to fix the cameras VWR
Sulphuric acid (0.5 M) Sigma Aldrich 339741-100ML
Telecentric High Resolution Type WD110 series Type MML1-HR110 Basler AG
Toluene Sigma Aldrich 244511-100ML
Various spare beakers and containers for leftover perchloric acid etc for the drop tower VWR
W-I lamp with light guides (2 x) Edmund Optics Dolan-Jenner MI-150 Fiber Optic Illuminator
CM-12 electron microscope with a twin objective lens, CCD camera (Gatan) system and an energy dispersive spectroscopy of X- rays (EDS) system) Philips
Dimension Icon AFM, rotated symmetric ScanAsyst-Air tips (silicon nitride), nominal tip radius of 2 nm Bruker

Referências

  1. May, M. M., Lewerenz, H. -. J., Lackner, D., Dimroth, F., Hannappel, T. Efficient Direct Solar-to-Hydrogen Conversion by In-Situ Interface Transformation of a Tandem Structure. Nature Communications. 6, 8286 (2015).
  2. Young, J. L., Steiner, M. A., Döscher, H., France, R. M., Turner, J. A., Deutsch, T. G. Direct Solar-to-Hydrogen Conversion via Inverted Metamorphic Multi-Junction Semiconductor Architectures. Nature Energy. 2, 17028-17036 (2017).
  3. Cheng, W. H., Richter, M. H., May, M. M., Ohlmann, J., Lackner, D., Dimroth, F., et al. Monolithic Photoelectrochemical Device for 19% Direct Water Splitting. ACS Energy Letters. 3, 1795-1800 (2018).
  4. Lewerenz, H. -. J., Heine, C., Skorupska, K., Szabo, N., Hannappel, T., Vo-Dinh, T., Campbell, S. H., Klemm, H. W., Munoz, A. G. Photoelectrocatalysis: Principles, Nanoemitter Applications and Routes to Bio-inspired Systems. Energy & Environmental Science. 3, 748-761 (2010).
  5. Raatschen, W. Potential and Benefits of Closed Loop ECLS Systems in the ISS. Acta Astronautica. 48 (5-12), 411-419 (2001).
  6. Brinkert, K., Richter, M., Akay, &. #. 2. 1. 4. ;., Liedtke, J., Gierisig, M., Fountaine, K. T., et al. Efficient Solar Hydrogen Production in Microgravity Environment. Nature Communications. 9, 2527 (2018).
  7. Heller, A., Vadimsky, R. G. Efficient solar to chemical conversion: 12 % efficient photoassisted electrolysis in the p-type InP(Ru)]/HCl-KCl/Pt(Rh) cell. Physical Review Letters. 46, 1153-1155 (1981).
  8. Muñoz, A. G., Heine, C., Lublow, M., Klemm, H. W., Szabó, N., Hannappel, T., et al. Photoelectrochemical conditioning of MOVPE p-InP films for light-induced hydrogen evolution: chemical, electronic and optical properties. ECS Journal of Solid State Science and Technology. 2, Q51-Q58 (2013).
  9. Sakurai, M., Sone, Y., Nishida, T., Matsushima, H., Fukunaka, Y. Fundamental Study of Water Electrolysis for Life Support System in Space. Electrochimica Acta. 100, 350-357 (2013).
  10. Sakuma, G., Fukunaka, Y., Matsushima, H. Nucleation and Growth of Electrolytic Gas Bubbles under Microgravity. International Journal of Hydrogen Energy. 39 (2014), 7638-7645 (2014).
  11. Patoka, P., Giersig, M. Self-Assembly of Latex Particles for the Creation of Nanostructures with Tunable Plasmonic Properties. Journal of Materials Chemistry. 21, 16783-16796 (2011).
  12. Jensen, T. R., Malinsky, M. D., Haynes, C. L., Van Duyne, R. P. Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver. Journal of Physical Chemistry B. 104, 10549-10556 (2000).
  13. Selig, H., Dittus, H., Lämmerzahl, C. Drop Tower Microgravity Improvement Towards the Nano-g Level for the Microscope Payload Tests. Microgravity Science and Technology. 22, 539-549 (2010).
  14. Lewerenz, H. J., Schulte, K. H. Combined Photoelectrochemical Conditioning and Surface Analysis of InP Photocathodes: II. Photoelectron Spectroscopy. Electrochimica Acta. 47 (16), 2639-2651 (2002).
  15. Schulte, K. H., Lewerenz, H. J. Combined Photoelectrochemical Conditioning and Surface Analysis of InP Photocathodes. I. The Modification Procedure. Electrochimica Acta. 47 (16), 2633-2638 (2002).
  16. Subramanian, R. S., Balasubramaniam, R. . The Motion of Bubbles and Drops in Reduced Gravity. , (2001).
  17. Matsushima, H., Kiuchi, D., Fukunaka, H., Kuribayashi, K. Single Bubble Growth During Water Electrolysis under Microgravity. Electrochemistry Communications. 11, 1721-1723 (2009).
  18. Kiuchi, D., Matsushima, H., Fukunaka, Y., Kuribayashi, K. Ohmic Resistance Measurement of Bubble Froth Layer in Water Electrolysis under Microgravity. Journal of the Electrochemical Society. 153 (8), 138-143 (2006).
  19. Matsushima, H., Nishida, T., Konishi, Y., Fukunaka, Y., Ito, Y., Kuribayashi, K. Water Electrolysis under Microgravity Part 1. Experimental Technique. Electrochimica Acta. 48, 4119-4125 (2003).
  20. Lao, L., Ramshaw, C., Yeung, H. Process Intensification: Water Electrolysis in a Centrifugal Acceleration Field. Journal of Applied Electrochemistry. 41, 645-656 (2011).
  21. Kaneko, H., Tanaka, K., Iwasaki, A., Abe, Y., Negishi, A., Water, K. a. m. i. m. o. t. o. M. Water Electrolysis under Microgravity Condition by Parabolic flight. Electrochimica Acta. 38, 729-733 (1993).
  22. Iwasaki, A., Kaneko, H., Abe, Y., Kamimoto, M. Investigation of Electrochemical Hydrogen Evolution under Microgravity Conditions. Electrochimica Acta. 43, 509-514 (1998).
  23. Lee, H. M., Takei, K., Zhang, J., Kapadia, R., Zheng, M., Chen, Y. -. Z., Nah, J., Matthews, T. S., Chueh, Y. -. L., Ager, J. -. W., Javey, A. p‐Type InP Nanopillar Photocathodes for Efficient Solar‐Driven Hydrogen Production. Angewandte Chemie International Edition. 51 (43), 10760-10764 (2012).
check_url/pt/59122?article_type=t

Play Video

Citar este artigo
Brinkert, K., Akay, Ö., Richter, M. H., Liedtke, J., Fountaine, K. T., Lewerenz, H., Giersig, M. Experimental Methods for Efficient Solar Hydrogen Production in Microgravity Environment. J. Vis. Exp. (154), e59122, doi:10.3791/59122 (2019).

View Video