Summary

一种表征姿势反应的仪器拉力测试

Published: April 06, 2019
doi:

Summary

姿势反射的损害, 称为姿势不稳定, 是很难量化的。临床评估 (如拉力测试) 会遇到可靠性和扩展性方面的问题。在这里, 我们提出了一个仪器版本的拉测试, 以客观地描述姿势反应。

Abstract

姿势反射的损害, 称为姿势不稳定, 是帕金森病的常见和致残的缺陷。为了评估体位反射, 临床医生通常采用拉力测试来对肩部向后的扰动进行校正反应。但是, 拉力测试容易出现可靠性和缩放 (记分) 方面的问题。在这里, 我们提出了一个仪器版本的拉测试, 以更精确地量化姿势反应。亲缘对临床试验, 拉除拉力外, 还记录拉。主干和脚的位移被半便携式运动跟踪系统捕获。原始数据表示行驶距离 (毫米单位), 使后续解释和分析直观。仪器拉力测试还检测影响拉力测试管理的变异性, 如拉力, 从而识别和量化可由统计技术解释的潜在混淆。仪器拉力试验可应用于旨在捕获姿势反应早期异常、跟踪体位不稳定和检测治疗反应的研究。

Introduction

姿势反射的作用是保持平衡和直立的立场, 以响应扰动 1。这些姿势反应的损害, 如帕金森病的疾病导致姿势不稳定, 并通常导致跌倒, 步行信心下降和生活质量下降 2,3,4。在临床实践中, 姿势反射通常通过拉力测试进行评估, 在这种测试中, 审查员轻快地将患者拉向后靠在肩膀上, 并在视觉上对反应 5,6, 7 进行评分,8. 姿势不稳定通常使用国际运动障碍协会5公布的帕金森病综合评分表 (0-正常至 4-严重) 进行评分.这种方法已被广泛用于评估患有帕金森病的个人, 但可靠性差, 缩放 (记分)6,7,9。拉考试成绩通常与重要的临床终点 (如跌倒) 和基于整数的评分缺乏敏感性来检测精细的姿势变化10,11

基于实验室的客观测量方法通过量化动力学 (例如压力中心)、运动学 (如关节性腺/肢体位移) 和神经生理学 (如肌肉), 提供有关平衡反应性质的准确信息) 终点12。这些方法可以在临床上明显的姿势不稳定之前发现异常, 并跟踪随着时间的推移而变化, 包括对治疗13,14的反应。

量化姿势不稳定的工具

传统的动态后尿路技术通常采用移动平台。所产生的姿势反应是通过后尿路造影、肌电图 (emg) 和加速度计 121516 的组合来量化的。然而, 平台扰动的自下而上的反应—-这引起了像在潮湿的地板上滑倒一样的反应—-与临床拉力试验的自上而下的姿势反应有根本的不同—-当在人群中被撞时可能会发生这种情况。新出现的证据表明, 截断扰动产生的姿势特征与移动平台的姿势特征不同, 为 171819.因此, 其他人则试图在实验室中使用复杂的技术, 包括电机、滑轮和钟摆 152021、22,截断扰动.测量方法往往费用高昂, 无法使用, 包括基于视频的运动捕捉, 需要在专门实验室提供专门的空间 20,21。理想情况下, 一个客观的方法来描述拉测试反应应该具有优良的心理测量性能, 易于管理, 易于操作, 广泛访问, 和便携。这对于促进广泛采用该技术作为一种替代评估工具以评估研究和潜在的临床环境中的体位反应非常重要。

仪器拉力测试

该方案的目的是为研究人员提供一种客观评估拉拔试验姿势反应的技术。半便携和广泛使用的电磁运动捕获系统是这一技术的基础。这种扰动涉及手动拉力, 不需要专门的机械系统。该方法具有足够的灵敏度, 可检测体位反应时间和响应振幅的微小差异;因此, 根据 UPDRS (无辅助平衡恢复的姿势不稳定),它适合捕获从正常到1级姿势不稳定的潜在异常。该方法也可用于探讨治疗对体位不稳定的影响。这里描述的协议来自 Tan 等人的协议。

Protocol

墨尔本卫生部当地人类研究伦理委员会对所描述的所有方法进行了审查和批准。研究前获得了参与者的知情同意。 1. 设备设置 根据制造商的指导, 使用3个微型运动传感器准备电磁运动跟踪器。在收集数据之前, 请确保每个传感器至少采样 250 Hz, 位移以毫米单位测量, 旋转 (俯仰、滚动和打哈欠) 以度为单位。确保禁用所有内部过滤器, 并将传感器设置为引用静态原点 (通…

Representative Results

仪器拉力测试 (图 1) 用于调查一个年轻的, 健康的队列23的躯干和步骤反应.对35项试验进行了连续介绍, 每次拉同时进行听觉刺激 (图 2)。听觉刺激有90分贝 (正常) 或116分贝 (大声)。大声的刺激已经被证明足以触发 StartReact 效应, 在这种效果下, 事先准备好的反应会通过惊人的听觉刺激25提前发?…

Discussion

在这里, 我们已经证明了临床拉力试验仪器的协议, 采取了一种广泛应用于临床实践的方法, 并产生了一个客观的测量姿势反应, 除了拉给管理的重要方面。使用半便携式运动跟踪, 这种方法提供了一种测量手段, 比传统的实验室技术更好地访问28。利用这种方法, 研究人员可以探索不同年龄和条件人群对自上而下的扰动的姿势反应特征。

虽然该议定书得到了成?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢安格斯·比格 (仿生学研究所) 在视频协议方面的协助。我们感谢推荐博士 (墨尔本大学统计咨询中心和墨尔本统计咨询平台) 提供统计支持。这项工作得到了国家卫生和医学研究委员会 (1066565)、维多利亚狮子基金会和维多利亚州政府运营基础设施支助方案的资助。

Materials

Analog to Digital Convertor & Software CED Micro 1401-3 Any suitable digital acquisition system can be used
Load Cell Omegadyne LCM201-100N
MATLAB Software MathWorks Inc. NA Any data science platform can be used
Motion Sensor Ascension 6DOF, type-800
Motion Tracker Ascension  3D Guidance trakSTAR Mid-range transmitter
S&F Technical Harness and Belt Lowepro LP36282

Referências

  1. Shemmell, J. Interactions between stretch and startle reflexes produce task-appropriate rapid postural reactions. Frontiers in Integrative Neuroscience. 9, (2015).
  2. Kerr, G. K., et al. Predictors of future falls in Parkinson disease. Neurology. 75 (2), 116-124 (2010).
  3. Latt, M. D., Lord, S. R., Morris, J. G. L., Fung, V. S. C. Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society. 24 (9), 1280-1289 (2009).
  4. Foreman, K. B., Addison, O., Kim, H. S., Dibble, L. E. Testing balance and fall risk in persons with Parkinson disease, an argument for ecologically valid testing. Parkinsonism & Related Disorders. 17 (3), 166-171 (2011).
  5. Fahn, S. . Recent Developments in Parkinson’s Disease. , 153-163 (1987).
  6. Hunt, A. L., Sethi, K. D. The pull test: a history. Movement disorders: official journal of the Movement Disorder Society. 21 (7), 894-899 (2006).
  7. Visser, M., et al. Clinical tests for the evaluation of postural instability in patients with parkinson’s disease. Archives of Physical Medicine and Rehabilitation. 84 (11), 1669-1674 (2003).
  8. Jacobs, J. V., Horak, F. B., Van Tran, K., Nutt, J. G. An alternative clinical postural stability test for patients with Parkinson’s disease. Journal of Neurology. 253 (11), 1404-1413 (2006).
  9. Nonnekes, J., Goselink, R., Weerdesteyn, V., Bloem, B. R. The retropulsion test: a good evaluation of postural instability in Parkinson’s disease?. Journal of Parkinson’s Disease. 5 (1), 43-47 (2015).
  10. Bloem, B. R., Beckley, D. J., van Hilten, B. J., Roos, R. A. C. Clinimetrics of postural instability in Parkinson’s disease. Journal of Neurology. 245 (10), 669-673 (1998).
  11. Thevathasan, W., et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: A clinical review. Movement Disorders. 33 (1), 10-20 (2018).
  12. Visser, J. E., Carpenter, M. G., van der Kooij, H., Bloem, B. R. The clinical utility of posturography. Clinical Neurophysiology. 119 (11), 2424-2436 (2008).
  13. McVey, M. A., et al. Early biomechanical markers of postural instability in Parkinson’s disease. Gait and Posture. 30 (4), 538-542 (2009).
  14. Mancini, M., et al. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinsonism & Related Disorders. 17 (7), 557-562 (2011).
  15. Nonnekes, J., et al. Are postural responses to backward and forward perturbations processed by different neural circuits?. Neurociência. 245, 109-120 (2013).
  16. Horak, F. B., Dimitrova, D., Nutt, J. G. Direction-specific postural instability in subjects with Parkinson’s disease. Experimental Neurology. 193 (2), 504-521 (2005).
  17. Colebatch, J. G., Govender, S., Dennis, D. L. Postural responses to anterior and posterior perturbations applied to the upper trunk of standing human subjects. Experimental Brain Research. 234, 367-376 (2016).
  18. Graus, S., Govender, S., Colebatch, J. G. A postural reflex evoked by brief axial accelerations. Experimental Brain Research. 228 (1), 73-85 (2013).
  19. Govender, S., Dennis, D. L., Colebatch, J. G. Axially evoked postural reflexes: influence of task. Experimental Brain Research. 233, 215-228 (2015).
  20. Smith, B. A., Carlson-Kuhta, P., Horak, F. B. Consistency in Administration and Response for the Backward Push and Release Test: A Clinical Assessment of Postural Responses: Consistency of Push and Release Test. Physiotherapy Research International. 21 (1), 36-46 (2016).
  21. Di Giulio, I., et al. Maintaining balance against force perturbations: impaired mechanisms unresponsive to levodopa in Parkinson’s disease. Journal of Neurophysiology. , (2016).
  22. Nonnekes, J., de Kam, D., Geurts, A. C. H., Weerdesteyn, V., Bloem, B. R. Unraveling the mechanisms underlying postural instability in Parkinson’s disease using dynamic posturography. Expert Review of Neurotherapeutics. 13 (12), 1303-1308 (2013).
  23. Tan, J. L., et al. Neurophysiological analysis of the clinical pull test. Journal of Neurophysiology. , (2018).
  24. McVey, M. A., et al. The effect of moderate Parkinson’s disease on compensatory backwards stepping. Gait and Posture. 38 (4), 800-805 (2013).
  25. Valls-Sole, J., et al. Reaction time and acoustic startle in normal human subjects. Neuroscience Letters. 195 (2), 97-100 (1995).
  26. Carlsen, A. N., Maslovat, D., Lam, M. Y., Chua, R., Franks, I. M. Considerations for the use of a startling acoustic stimulus in studies of motor preparation in humans. Neuroscience and Biobehavioral Reviews. 35 (3), 366-376 (2011).
  27. Nanhoe-Mahabier, W., et al. First trial reactions and habituation rates over successive balance perturbations in Parkinson’s disease. Neurociência. 217, 123-129 (2012).
  28. Aminian, K., Najafi, B. Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Computer animation and virtual worlds. 15 (2), 79-94 (2004).
  29. De Luca, C. J. The use of surface electromyography in biomechanics. Journal of Applied Biomechanics. 13 (2), 135-163 (1997).
  30. Horak, F. B., Nashner, L. M. Central programming of postural movements: adaptation to altered support-surface configurations. Journal of Neurophysiology. 55 (6), 1369-1381 (1986).
  31. Saito, H., Yamanaka, M., Kasahara, S., Fukushima, J. Relationship between improvements in motor performance and changes in anticipatory postural adjustments during whole-body reaching training. Human Movement Science. 37, 69-86 (2014).
  32. Kam, D. D., et al. Dopaminergic medication does not improve stepping responses following backward and forward balance perturbations in patients with Parkinson’s disease. Journal of Neurology. 261 (12), 2330-2337 (2014).
  33. Peterson, D. S., Horak, F. B. The Effect of Levodopa on Improvements in Protective Stepping in People With Parkinson’s Disease. Neurorehabilitation and Neural Repair. 30 (10), 931-940 (2016).
  34. Haubenberger, D., et al. Transducer-based evaluation of tremor. Movement Disorders. 31 (9), 1327-1336 (2016).
  35. Elble, R., et al. Task force report: scales for screening and evaluating tremor: critique and recommendations. Movement disorders: official journal of the Movement Disorder Society. 28 (13), 1793-1800 (2013).
  36. Adkin, A. L., Carpenter, M. G. New insights on emotional contributions to human postural control. Frontiers in Neurology. 9, 789 (2018).
  37. Huffman, J. L., Horslen, B., Carpenter, M., Adkin, A. L. Does increased postural threat lead to more conscious control of posture?. Gait and Posture. 30 (4), 528-532 (2009).
  38. Valls-Sole, J., Rothwell, J. C., Goulart, F., Cossu, G., Munoz, E. Patterned ballistic movements triggered by a startle in healthy humans. The Journal of Physiology. 516 (Pt 3), 931-938 (1999).
  39. Campbell, A. D., Squair, J. W., Chua, R., Inglis, J. T., Carpenter, M. G. First trial and StartReact effects induced by balance perturbations to upright stance. Journal of Neurophysiology. 110 (9), 2236-2245 (2013).
  40. Oude Nijhuis, L. B., Allum, J. H. J., Valls-Solé, J., Overeem, S., Bloem, B. R. First trial postural reactions to unexpected balance disturbances: a comparison with the acoustic startle reaction. Journal of Neurophysiology. 104 (5), 2704-2712 (2010).
check_url/pt/59309?article_type=t

Play Video

Citar este artigo
Tan, J., Thevathasan, W., McGinley, J., Brown, P., Perera, T. An Instrumented Pull Test to Characterize Postural Responses. J. Vis. Exp. (146), e59309, doi:10.3791/59309 (2019).

View Video