Summary

Hurtig og effektiv ekspression af flere proteiner i aviær embryoner ved hjælp af mRNA-elektroporation

Published: June 07, 2019
doi:

Summary

Vi rapporterer Messenger RNA (mRNA) elektroporation som en metode, der tillader hurtig og effektiv ekspression af flere proteiner i vagtler embryo modelsystemet. Denne metode kan anvendes til fluorescently label celler og registrere deres in vivo bevægelser ved time-lapse mikroskopi kort efter elektroporation.

Abstract

Vi rapporterer, at mRNA elektroporation tillader fluorescerende proteiner til at mærke celler i levende vagtler embryoner hurtigere og bredt end DNA-elektroporation. Den høje transfektering effektivitet tillader mindst 4 særskilte mRNAs at blive Co-transfected med ~ 87% effektivitet. De fleste af de elektro porterede mRNAs nedbrydes i løbet af de første 2 h post-elektro poration, hvilket tillader tidsfølsomme eksperimenter, der skal udføres i det udviklende embryon. Endelig beskriver vi, hvordan man dynamisk billede levende embryoner elektroporeret med mRNAs at indkode forskellige subcellulære målrettede fluorescerende proteiner.

Introduction

Elektro poration er en fysisk transfektering metode, der bruger en elektrisk puls til at skabe forbigående porer i plasma membranen, så stoffer som nukleinsyre eller kemikalier til at passere ind i cytosol. Elektro poration anvendes i vid udstrækning til at levere DNA til bakterier, gær, planter og pattedyrsceller1,2,3. Det bruges rutinemæssigt til at introducere genetiske nyttelast i målceller og væv inden for det udviklende aviær embryo for at studere den genetiske kontrol med udvikling eller mærke migrerende populationer af celler4,5,6, 7. Der findes dog også flere eksperimentelle begrænsninger med DNA-elektroporation8. For eksempel introducerer DNA-elektro portering ofte meget varierende antal udtryks vektorer pr. celle og efterfølgende mRNAs og proteiner, som de koder. Denne variation kan føre til en betydelig celle celle heterogenitet, der komplicerer både billedanalyse og data tolkning9,10. Desuden, proteiner fra DNA-elektroporation kun begynde at udtrykke ~ 3 h post-elektro poration og ikke når den maksimale effektivitet i celle nummer og fluorescens intensitet indtil 12 h, sandsynligvis på grund af den tid, der kræves for at overføre til kernen og komplet både transskription og oversættelse in vivo11.

I modsætning hertil har mRNA transfektering været anvendt effektivt i en række forskellige modelsystemer, herunder xenopus laevis oocytter ved mikroinjektion12,13, omprogrammering af humane stamceller ved mRNA lipofectamintransfection14 og elektroporerende genstridige neurale stamceller i voksne mus15. Vi testede mRNA electroporations evne til effektivt at mærke celler under tidlig aviær embryonal udvikling ved hjælp af in vitro syntetiserede Mrna’er, der indkoder distinkte fluorescerende proteiner (FPs). Til vores studier brugte vi pCS2 + Vector, en multifunktions ekspressions vektor, der almindeligvis anvendes til at udtrykke proteiner i xenopus og Zebra embryoner. SP6-og T7 RNA-polymerasepromotorerne i pCS2 + tillader syntesen af mRNA og protein fra ethvert klonet gen, når det anvendes i et in vitro-transskription/oversættelsessystem.

Her viser vi, at mRNA elektroporation giver mulighed for hurtig og effektiv ekspression af fluorescerende proteiner (fps) i gastrulerende vagtler embryoner. Vi designede og genererede mange af de udtryks vektorer, der anvendes i disse studier. For eksempel under klappede vi LifeAct-eGFP gene16 i pCS2 + Vector17 for at udtrykke fra CMV promoter og SP6 Promoter. Det indsatte gen ligger nedstrøms for SP6-promotoren og opstrøms for SV40 poly (A) hale18. I embryoner Co-elektroporeret med mRNA og DNA, FPs kodet fra in vitro transkriberet mRNAs blev først detekteret inden for 20 min af elektro poration, hvorimod FPs fra DNA-udtryks vektorer blev detekteret først efter 3 h. multiple mRNAs kodning for nuklear, Golgi, og membran proteiner kan elektroporeres ind i et embryon samtidigt, hvilket resulterer i hurtig og effektiv ekspression af flere proteiner i individuelle celler. Endelig, ved hjælp af en in vivo fluorescens opsving efter photobleaching (FRAP) assay, viser vi, at et flertal af de elektro porterede mRNAs forfald inden for 2 h. Således, hurtig indledende protein produktion kombineret med begrænset ny protein oversættelse gør mRNA elektro poration en værdifuld teknik, når tidsmæssig kontrol af udtryk er nødvendig.

Protocol

Alle dyreforsøg blev udført i overensstemmelse med godkendte retningslinjer fra children’s Hospital Los Angeles og University of Southern California institutionelle dyrepleje-og Brugsudvalg. 1. generation, pCS2-baserede, udtryk vektorer At klone pCS2. Lifeact-eGFP, Forbered vektor rygraden ved at fordøje 2 μg pCS2. CycB1-GFP (en konstruktion, der indeholder et andet skær) med BamHI (10 U) og BsrGI (10 U) i passende fordøjelses buffer (se tabel over materialer) fortynde…

Representative Results

mRNA elektroporation er mere effektiv end DNA-elektroporation Vi brugte pCS2 +. H2B-Citrine til at forberede in vitro transkriberet mRNA. Da DNA-elektroporation sædvanligvis udføres ved 1-2 μg/μL, brugte vi en equimolær koncentration af mRNA (beregnet til at være omkring 0,25-0,5 μg/μL for H2B-citrin) til mRNA-elektroporation. Vi testede først elektroporations effektiviteten af pCS2 +. H2B-Citrine DNA s…

Discussion

I denne protokol, vi gav trin for trin instruktioner om, hvordan man præcist mikroinjicere og elektroporat mRNA i cellerne i gastrulerende vagtler embryoner. Vi påviste, at in vitro syntetiseret mRNA elektroporation giver hurtig og effektiv ekspression af fluorescerende proteiner (FPs) i gastrulerende vagtler embryoner (figur 2 og 3). Fluorescens fra H2B-Citrine protein oversat fra elektro porteret mRNAs kunne påvises ved Konfokal mikroskopi inden for ~ 20 min og steg i F…

Declarações

The authors have nothing to disclose.

Acknowledgements

Vi takker David Huss for nyttige indblik i dette arbejde. Dette arbejde blev delvist støttet af Rose Hills Foundation Summer Research Fellowship (2016-2018) og USC Provosts undergrad Research Fellowship til M.T., Saban Research Institute Intramural Training pre-doktor Award til M.D., og University of Southern California bachelor forskning Associates program Award til R.L.

Materials

BamHI-HF New England Biolabs R3136L
BglII New England Biolabs R0144S
BsrG1-HF New England Biolabs R3575S
NotI-HF New England Biolabs R3189L
SalI-HF New England Biolabs R3138L
Phenol:Chloroform:Isoamyl Alcohol Thermo Fisher 15593031
SP6 mMessage Machine in vitro transcription kit Thermo Fisher AM1340
Fast Green FCF Sigma Aldrich F7252
Triton X-100 Sigma Aldrich 93443 4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol, t-Octylphenoxypolyethoxyethanol, Polyethylene glycol tert-octylphenyl ether
DAPI Sigma Aldrich D9542 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride, 4′,6-Diamidino-2-phenylindole dihydrochloride, DAPI dihydrochloride
Whatman No.1 filter paper Sigma Aldrich WHA1001125
glycerol Sigma Aldrich G9012
Urea Sigma Aldrich 51457
pmTurquoise2-Golgi Addgene 36205 pmTurquoise2-Golgi was a gift from Dorus Gadella (Addgene plasmid # 36205 ; http://n2t.net/addgene:36205 ; RRID:Addgene_36205)
pmEGFP-N1-LifeAct Nat. Methods 2008;5:605-7. PubMed ID: 18536722
pCS2.Lifeact-mGFP Addgene This paper
pCS.H2B-citrine Addgene 53752 pCS-H2B-citrine was a gift from Sean Megason (Addgene plasmid # 53752 ; http://n2t.net/addgene:53752 ; RRID:Addgene_53752)
pCS.memb-mCherry Addgene #53750 pCS-memb-mCherry was a gift from Sean Megason (Addgene plasmid # 53750 ; http://n2t.net/addgene:53750 ; RRID:Addgene_53750)
Zeiss LSM-780 inverted microscope Carl Zeiss Microscopy GmbH The LSM-780 is a confocal and multi-photon microscope that offers the sensitivity required for vital imaging work. Equipped with a motorized stage, an autofocus device, and a full stage-top blackout incubator, the 780 is an excellent microscope for high-end live cell/embryo imaging. The high-sensitivity 32-channel Quasar detector allows for spectral imaging, linear unmixing, and high color count (>4) image acquisition. Excitation can be performed with 6 lines single photon lasers (405, 458, 488, 514, 564 and 633 nm), Chameleon (Coherent) 2-photon laser (range from 690nm to 1000nm), and run with ZEN 2011 SP7 (Black) system software.
CUY-21 EDIT in vivo electroporator Bex Co., Ltd.
Platinum flat square electrode, side length 5 mm Bex Co., Ltd. LF701P5E
Olympus MVX10 FL Stereo Microscope Olympus LifeScience
XM10 Monochrome camera Olympus LifeScience
Phosphate-Buffered Saline (PBS) for HCR (10×, pH 7.4) To prepare 1 L of a 10× stock solution, combine 80 g of NaCl (Sigma-Aldrich S3014), 2 g of KCl (Sigma-Aldrich P9541), 11.4 g of Na2HPO4 (anhydrous; Sigma-Aldrich S3264), and 2.7 g of KH2PO4 (anhydrous; Sigma-Aldrich P9791). Adjust the pH to 7.4 with HCl, and bring the final volume to 1 L with ultrapure H2O. Avoid using CaCl2 and MgCl2 in PBS for HCR. It is important that the PBS for HCR is prepared as an RNase-free solution (e.g., via diethylpyrocarbonate [DEPC] treatment).
1.37 M NaCl
27 mM KCl
80 mM Na2HPO4 20 mM KH2PO4
PBS/Triton Add 1 mL of Triton X-100 (Sigma Aldrich 93443) and 100 mL of 10× PBS to 890 mL of ultrapure distilled H2O. Filter the solution through a 0.2-μm filter and store it at 4 ̊C until use.
1× phosphate-buffered saline (PBS) (DEPC-treated; pH 7.4)
0.1% Triton X-100

Referências

  1. Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P. H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO Journal. 1 (7), 841-845 (1982).
  2. Potter, H. Electroporation in biology: methods, applications, and instrumentation. Analytical Biochemistry. 174 (2), 361-373 (1988).
  3. Shillito, R. D., Saul, M. W., Paszkowski, J., Muller, M., Potrykus, I. High-Efficiency Direct Gene-Transfer to Plants. Bio-Technology. 3 (12), 1099-1103 (1985).
  4. Cui, C., Rongish, B., Little, C., Lansford, R. Ex Ovo Electroporation of DNA Vectors into Pre-gastrulation Avian Embryos. CSH Protocol. 2007 (24), 4894 (2007).
  5. Voiculescu, O., Papanayotou, C., Stern, C. D. Spatially and temporally controlled electroporation of early chick embryos. Nature Protocol. 3 (3), 419-426 (2008).
  6. Voiculescu, O., Stern, C. D. Manipulating Gene Expression in the Chick Embryo. Methods Molecular Biology. , 105-114 (2017).
  7. Chuai, M., et al. Cell movement during chick primitive streak formation. Developmental Bioliogy. 296 (1), 137-149 (2006).
  8. Krull, C. E. A primer on using in ovo electroporation to analyze gene function. Developmental Dynamics. 229 (3), 433-439 (2004).
  9. Momose, T., et al. Efficient targeting of gene expression in chick embryos by microelectroporation. Developmental, Growth and Differentiation. 41 (3), 335-344 (1999).
  10. Nakamura, H., Watanabe, Y., Funahashi, J. Misexpression of genes in brain vesicles by in ovo electroporation. Developmental, Growth and Differentiation. 42 (3), 199-201 (2000).
  11. Teddy, J. M., Lansford, R., Kulesa, P. M. Four-color, 4-D time-lapse confocal imaging of chick embryos. Biotechniques. 39 (5), 703-710 (2005).
  12. Green, M. R., Maniatis, T., Melton, D. A. Human beta-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell. 32 (3), 681-694 (1983).
  13. Mimoto, M. S., Christian, J. L. Manipulation of gene function in Xenopus laevis. Methods in Molecular Biology. 770, 55-75 (2011).
  14. Luni, C., et al. High-efficiency cellular reprogramming with microfluidics. Nature Methods. 13 (5), 446-452 (2016).
  15. Bugeon, S., et al. Direct and efficient transfection of mouse neural stem cells and mature neurons by in vivo mRNA electroporation. Development. 144 (21), 3968-3977 (2017).
  16. Riedl, J., et al. Lifeact: a versatile marker to visualize F-actin. Nature Methods. 5 (7), 605-607 (2008).
  17. Turner, D. L., Weintraub, H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes and Development. 8 (12), 1434-1447 (1994).
  18. Krieg, P. A., Melton, D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Research. 12 (18), 7057-7070 (1984).
  19. Hamburger, V., Hamilton, H. L. A series of normal stages in the development of the chick embryo. Journal of Morphology. 88 (1), 49-92 (1951).
  20. Eyal-Giladi, H., Kochav, S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stage of the development of the chick. I. General morphology. Biologia do Desenvolvimento. 49, 321-337 (1976).
  21. Ainsworth, S. J., Stanley, R. L., Evans, D. J. Developmental stages of the Japanese quail. Journal of Anatomy. 216 (1), 3-15 (2010).
  22. Chapman, S. C., Collignon, J., Schoenwolf, G. C., Lumsden, A. Improved method for chick whole-embryo culture using a filter paper carrier. Developmental Dynamics. 220 (3), 284-289 (2001).
  23. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neurosciences. 14 (11), 1481-1488 (2011).
  24. New, D. A new technique for the cultivation of the chick embryo in vitro. Journal of Embryology and Experimental Morphology. 3, 320-331 (1955).
  25. Drake, C. J., Davis, L. A., Hungerford, J. E., Little, C. D. Perturbation of beta 1 integrin-mediated adhesions results in altered somite cell shape and behavior. Biologia do Desenvolvimento. 149 (2), 327-338 (1992).
  26. Sato, Y., et al. Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLoS ONE. 5 (9), e12674 (2010).
  27. Kanda, T., Sullivan, K. F., Wahl, G. M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Current Biology. 8 (7), 377-385 (1998).
  28. Uetrecht, A. C., Bear, J. E. Golgi polarity does not correlate with speed or persistence of freely migrating fibroblasts. European Journal of Cell Biology. 88 (12), 711-717 (2009).
  29. Alberts, B., et al. . Molecular Biology of the Cell. , (2007).
  30. Arndt-Jovin, D. J., Jovin, T. M. Fluorescence labeling and microscopy of DNA. Methods Cell Biol. 30, 417-448 (1989).
  31. Jovin, T. M., Arndt-Jovin, D. J. Luminescence digital imaging microscopy. Annu Rev Biophysics and Biophysical Chemistry. 18, 271-308 (1989).
  32. Heikal, A. A., Hess, S. T., Baird, G. S., Tsien, R. Y., Webb, W. W. Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proceedings of the National Academy of Science U S A. 97 (22), 11996-12001 (2000).
  33. Iizuka, R., Yamagishi-Shirasaki, M., Funatsu, T. Kinetic study of de novo chromophore maturation of fluorescent proteins. Analytical Biochemistry. 414 (2), 173-178 (2011).
  34. Nakamura, H., Katahira, T., Sato, T., Watanabe, Y., Funahashi, J. Gain- and loss-of-function in chick embryos by electroporation. Mechanism of Development. 121 (9), 1137-1143 (2004).
  35. Swartz, M., Eberhart, J., Mastick, G. S., Krull, C. E. Sparking new frontiers: using in vivo electroporation for genetic manipulations. Biologia do Desenvolvimento. 233 (1), 13-21 (2001).
  36. Meyer, S., Temme, C., Wahle, E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Critical Reviews in Biochemistry and Molecular Biology. 39 (4), 197-216 (2004).
  37. Bevilacqua, P. C., Ritchey, L. E., Su, Z., Assmann, S. M. Genome-Wide Analysis of RNA Secondary Structure. Annual Review in Genetics. 50, 235-266 (2016).
  38. Harland, R., Misher, L. Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA. Development. 102 (4), 837-852 (1988).
  39. Lippincott-Schwartz, J. The long road: peering into live cells. Nature Cell Biology. 12 (10), 918 (2010).
  40. Sato, Y., Lansford, R. Transgenesis and imaging in birds, and available transgenic reporter lines. Development Growth & Differentiation. 55 (4), 406-421 (2013).
  41. Goldman, R. D., Spector, D. L. . Live Cell Imaging: A Laboratory Manual. , (2005).
check_url/pt/59664?article_type=t

Play Video

Citar este artigo
Tran, M., Dave, M., Lansford, R. Fast and Efficient Expression of Multiple Proteins in Avian Embryos Using mRNA Electroporation. J. Vis. Exp. (148), e59664, doi:10.3791/59664 (2019).

View Video