Summary

LarvaSPA,一种用于长期延时成像的安装果蝇幼虫的方法

Published: February 27, 2020
doi:

Summary

该协议描述了一种在完整的活体动物中安装果蝇幼虫以实现超过10小时的不间断延时成像的方法。该方法可用于成像许多靠近幼虫体壁的生物过程。

Abstract

活成像是研究细胞生物学问题的宝贵方法。果蝇幼虫特别适合体内活体成像,因为幼虫体壁和大多数内部器官是透明的。然而,对完整果蝇幼虫进行超过30分钟的连续活成像一直具有挑战性,因为长期以来很难非侵入性的防活动幼虫。在这里,我们提出了一种称为LarvaSPA的幼虫安装方法,它允许对具有高时空分辨率的活果蝇幼虫进行连续成像,时间及空间分辨率超过10小时。此方法涉及使用紫外线反应胶将幼虫部分附着在盖玻片上,并使用聚二甲基硅氧烷 (PDMS) 块额外限制幼虫运动。该方法与处于发育阶段的幼虫相容,从第二星到游荡第三星。我们演示了这种方法在研究果蝇体细胞感觉神经元的动态过程中的应用,包括树突生长和损伤引起的树突退化。该方法还可用于研究在幼虫体壁附近发生的许多其他细胞过程。

Introduction

延时实时成像是研究动态细胞过程的有力方法。延时电影提供的空间和时间信息可以揭示回答细胞生物学问题的重要细节。果蝇幼虫一直是一个流行的体内模型,用于使用活成像研究,因为它透明的体壁允许对内部结构1,2进行非侵入性成像。此外,在果蝇中,有许多遗传工具可用于荧光标记解剖结构和大分子3。然而,对果蝇幼虫进行长期延时成像具有挑战性。与静止的早期胚胎或幼虫不同,果蝇幼虫不断移动,需要固定进行活体成像。固定活果蝇幼虫的有效方法包括:用氯仿4安装在卤化碳油中,使用胶原素或二氯沃斯溶液5进行麻醉,以及压缩盖玻片和显微镜幻灯片6。虽然其中一些方法已用于显微镜,但没有一个对长期活成像有效。其他方法被开发成像身体壁神经元在爬行幼虫使用传统的共聚焦显微镜或光片显微镜7,8,9。然而,由于幼虫的运动,这些方法不是监测细胞动力学的理想方法。

开发了新的方法,以实现果蝇幼虫的长期延时成像。使用聚二甲基硅氧烷(PDMS)”幼虫芯片”,果蝇幼虫可以通过真空产生的吸力在专用微室中有效固定,无需麻醉。然而,这种方法没有为细胞生物学研究提供高时间分辨率,对动物大小10有严格的限制。另一种使用麻醉装置的方法在多个时间点实现了果蝇幼虫的活成像,并已应用于研究神经肌肉结11、12、13、14、15、16。然而,这种方法也不允许连续成像超过30分钟,并要求反复使用去氟化物,这可以抑制神经活动,影响研究17,18的生物过程。最近,一种将微流体装置和冷冻麻醉相结合的新方法被用于短时间(分钟)19固定各种大小的幼虫。然而,这种方法需要专门的设备,如冷却系统,长时间的固定需要反复冷却幼虫。

在这里,我们提出了一种多功能的固定果蝇幼虫的方法,与不间断的延时成像相容,时间超过10小时。这种方法,我们称之为”拉瓦稳定部分附件”(LarvaSPA),涉及将幼虫角膜粘附在一个覆盖玻片上,用于在定制的成像室进行成像。该协议描述了如何使成像室,以及如何在各种发育阶段安装幼虫。在 LarvaSPA 方法中,所需的车身段使用紫外线反应胶贴在盖玻片上。PDMS 立体体另外对幼虫施加压力,防止逃生。成像室中的空气和水分可确保在成像过程中部分固定的幼虫存活。LarvaSPA 比其他技术的优点包括:(1) 它是允许对完整的果蝇幼虫进行连续活成像的第一种方法,其时间和空间分辨率较高;(2)该方法对幼虫大小的限制较少;(3) 成像室和PDMS立体体可以以最低的成本制造,并且可重复使用。

除了描述幼虫安装方法外,我们还提供了几个用于研究树突发育和树突变性的突树种树突化(da)神经元的例子。

Protocol

1. 制作成像室 金属框架可以从典型机器车间的铝块中构造。图1A说明了框架的规格。 要构建成像室,请使用长盖玻片(22 mm x 50 mm)和 UV 胶水(图 1A) 密封金属框架的底部。使用手持紫外线灯固化 UV 胶水。 2. 制作 PDMS 立体体 为 PDMS 立体体准备模具。 将包装胶带层连接到?…

Representative Results

幼虫成像室通过将定制的金属框架和两个盖玻片一起胶合而成。金属框架的设计在图1A中指定。在紫外线胶水和PDMS立体体的帮助下,室内的果蝇幼虫粘附在顶盖玻片上。PDMS 立体体上的凹槽和立方体的双面胶带连接,以创建容纳幼虫的空间(图 1B,C)。PDMS 还施加轻柔压力以压平幼虫体壁,并实际限制幼虫运动。最后,将一小块湿透镜纸放…

Discussion

在这里,我们描述了LarvaSPA,一种用于长期延时成像的多功能安装活果蝇幼虫的方法。此方法不需要恢复或重新安装幼虫,可实现不间断的成像。因此,它是跟踪需要数小时才能完成的生物过程的理想选择,例如树突退化和再生。该方法还可用于成像细胞内钙动力学和亚细胞事件,如微管生长。由于幼虫体壁在成像过程中是稳定的,因此可以调整空间和时间分辨率以适应手头的成像应用(?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢唐灵峰建立了早期版本的拉瓦SPA方法;格伦·斯旺在康奈尔奥林霍尔机器商店制造早期原型的成像室;菲利普·伊瑟曼用于构建金属框架,并提供PDMS立体体制作建议;康奈尔BRC成像设备用于显微镜(由NIH赠款S10OD018516资助);玛丽亚·萨帕尔对手稿进行批判性阅读。这项工作得到了康奈尔大学奖学金授予H.J.的支持;康奈尔大学启动基金和NIH赠款(R01NS099125和R21OD023824)授予C.H.H.J.和C.H.构思该项目并设计了实验。H.J.进行了实验。H.J.和C.H.写了手稿。

Materials

6061 Aluminum bars McMaster-Carr 9246K421
3M double-sided tape Ted Pella, Inc. 16093
3M Scotch Packaging tape 3M 1.88"W x 22.2 Yards
DUMONT #3 Forceps Fisher Scientific 50-241-34
Glass coverslip Azer Scientific 1152250
Isoflurane Midwest Veterinary Supply 193.33161.3
Leica Confocal Microscope Leica SP8 equipped with a resonant scanner
Lens paper Berkshire LN90.0406.24
Petri dishes (medium) VWR 25373-085
Petri dishes (small) VWR 10799-192
Razor blade Ted Pella, Inc. 121-20
Rectangular petri dish VWR 25384-322
SYLGARD 184 kit (PBMS kit) Electron Microscopy Sciences 24236-10
Transferring pipette Thermo Fisher Scientific 1371126
UV glue Norland products #6106, NOA 61 Refractive Index 1.56
UV lamp (Workstar 2003) Maxxeon MXN02003
Vacuum desiccator Electron Microscopy Sciences 71232
Wipes Kimberly-Clark Kimwipes

Referências

  1. Grueber, W. B., Jan, L. Y., Jan, Y. N. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development. 129 (12), 2867-2878 (2002).
  2. Schmid, A., et al. Activity-dependent site-specific changes of glutamate receptor composition in vivo. Nature Neuroscience. 11 (6), 659-666 (2008).
  3. Venken, K. J., Simpson, J. H., Bellen, H. J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron. 72 (2), 202-230 (2011).
  4. Daniele, J. R., Baqri, R. M., Kunes, S. Analysis of axonal trafficking via a novel live-imaging technique reveals distinct hedgehog transport kinetics. Biology Open. 6 (5), 714-721 (2017).
  5. Csordas, G., et al. In vivo immunostaining of hemocyte compartments in Drosophila for live imaging. PLoS One. 9 (6), 98191 (2014).
  6. Han, C., Jan, L. Y., Jan, Y. N. Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 108 (23), 9673-9678 (2011).
  7. He, L., et al. Direction Selectivity in Drosophila Proprioceptors Requires the Mechanosensory Channel Tmc. Current Biology. 29 (6), 945-956 (2019).
  8. Heckscher, E. S., Lockery, S. R., Doe, C. Q. Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. The Journal of Neuroscience. 32 (36), 12460-12471 (2012).
  9. Vaadia, R. D., et al. Characterization of Proprioceptive System Dynamics in Behaving Drosophila Larvae Using High-Speed Volumetric Microscopy. Current Biology. 29 (6), 935-944 (2019).
  10. Mishra, B., et al. Using microfluidics chips for live imaging and study of injury responses in Drosophila larvae. Journal of Visualized Experiments. (84), e50998 (2014).
  11. Andlauer, T. F., Sigrist, S. J. In vivo imaging of the Drosophila larval neuromuscular junction. Cold Spring Harbor Protocols. 2012 (4), 481-489 (2012).
  12. Andlauer, T. F., Sigrist, S. J. Building an imaging chamber for in vivo imaging of Drosophila larvae. Cold Spring Harbor Protocols. 2012 (4), 476-480 (2012).
  13. Andlauer, T. F., Sigrist, S. J. Quantitative analysis of Drosophila larval neuromuscular junction morphology. Cold Spring Harbor Protocols. 2012 (4), 490-493 (2012).
  14. Andlauer, T. F., Sigrist, S. J. In vivo imaging of Drosophila larval neuromuscular junctions to study synapse assembly. Cold Spring Harbor Protocols. 2012 (4), 407-413 (2012).
  15. Zhang, Y., et al. In vivo imaging of intact Drosophila larvae at sub-cellular resolution. Journal of Visualized Experiments. (43), e2249 (2010).
  16. Fuger, P., Behrends, L. B., Mertel, S., Sigrist, S. J., Rasse, T. M. Live imaging of synapse development and measuring protein dynamics using two-color fluorescence recovery after photo-bleaching at Drosophila synapses. Nature Protocols. 2 (12), 3285-3298 (2007).
  17. Sandstrom, D. J. Isoflurane depresses glutamate release by reducing neuronal excitability at the Drosophila neuromuscular junction. The Journal of Physiology. 558, 489-502 (2004).
  18. Sandstrom, D. J. Isoflurane reduces excitability of Drosophila larval motoneurons by activating a hyperpolarizing leak conductance. Anesthesiology. 108 (3), 434-446 (2008).
  19. Chaudhury, A. R., et al. On chip cryo-anesthesia of Drosophila larvae for high resolution in vivo imaging applications. Lab on a Chip. 17 (13), 2303-2322 (2017).
  20. Han, C., et al. Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space. Neuron. 73 (1), 64-78 (2012).
  21. Kim, M. E., Shrestha, B. R., Blazeski, R., Mason, C. A., Grueber, W. B. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons. Neuron. 73 (1), 79-91 (2012).
  22. Grueber, W. B., et al. Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development. 134 (1), 55-64 (2007).
  23. Poe, A. R., et al. Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 114 (38), 8062-8071 (2017).
  24. Han, C., et al. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron. 81 (3), 544-560 (2014).
  25. Song, Y., et al. Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam. Genes, Development. 26 (14), 1612-1625 (2012).
  26. Stone, M. C., Albertson, R. M., Chen, L., Rolls, M. M. Dendrite injury triggers DLK-independent regeneration. Cell Reports. 6 (2), 247-253 (2014).
  27. Sapar, M. L., et al. Phosphatidylserine Externalization Results from and Causes Neurite Degeneration in Drosophila. Cell Reports. 24 (9), 2273-2286 (2018).
  28. Xiang, Y., et al. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature. 468 (7326), 921-926 (2010).
  29. Desjardins, M., et al. Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 4 (6), 533-542 (2019).
  30. Huang, C., et al. Long-term optical brain imaging in live adult fruit flies. Nature Communications. 9 (1), 872 (2018).
  31. Low, R. J., Gu, Y., Tank, D. W. Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex. Proceedings of the National Academy of Sciences of the United States of America. 111 (52), 18739-18744 (2014).
check_url/pt/60792?article_type=t

Play Video

Citar este artigo
Ji, H., Han, C. LarvaSPA, A Method for Mounting Drosophila Larva for Long-Term Time-Lapse Imaging. J. Vis. Exp. (156), e60792, doi:10.3791/60792 (2020).

View Video