Summary

Generation of Human Regulatory T Cell Clones

Published: May 17, 2020
doi:

Summary

This protocol describes the cloning and expansion of human regulatory T cells for the generation of ultra-high purity viable human Treg with stable demethylation at the Treg-specific demethylated region (TSDR) and Treg-specific phenotypic features.

Abstract

Human regulatory T cells (Treg) are notoriously difficult to isolate in high purity given the current methods of Treg enrichment. These methods are based on the identification of Treg through several activation-dependent cellular surface markers with varying expression levels in different physiologic and pathologic conditions. Populations isolated as “Treg” therefore often contain considerable numbers of non-Treg effector cells (i.e., Teff) which hamper the precise phenotypic and functional characterization of these cells, their genomic and proteomic characterization, their reliable enumeration in different states of health and disease, as well as their isolation and expansion for therapeutic purposes. The latter, in particular, remains a major hurdle, as the inadvertent expansion of effector cells homing in Treg-relevant cellular compartments (e.g., CD4+CD25+ T cells) may render Treg-based immunotherapy ineffective, or even harmful. This work presents a method that circumvents the problems associated with population-based isolation and expansion of Treg and shows that the generation of Treg candidate clones with the subsequent selection, culture, and expansion of only carefully vetted, monoclonal cells, enables the generation of an ultrapure Treg cell product that can be kept in culture for many months, enabling downstream investigation of these cells, including for possible therapeutic applications.

Introduction

The purpose of this protocol is to enable the in vitro propagation of ultra-high purity, clonal human Treg. Isolation of Treg-enriched populations and subsequent cloning allows for the selection of desired Treg phenotypes and their expansion for further study of the biology of these cells, exploration of their potential therapeutic usefulness, and other experimental downstream applications.

Cloning Treg will yield significantly better Treg purity than polyclonal isolation and expansion approaches. This is due to the reliable, controlled exclusion of T effector cells with similar or different phenotypes from the purified population, including FOXP3-expressing (FOXP3intCD45RAnegCD25int) non-Treg and CD4+ CD25+ FOXP3 Teff1, among others. Clonal cell lines obtained through this approach do not face the problem of overgrowth with rapidly-expanding non-Treg clones that render very long-term expansion (i.e., several months) and in vitro culture of the cells practically impossible or at least extremely challenging. Clonal Treg also allow extensive vetting of their phenotypic features postexpansion, including through methods recognized as standard for the assessment of epigenetic features indicative of human bona fide natural Treg1,2,3,4 (e.g., stable demethylation at the TSDR).

Treg expansion has mainly been performed in the form of polyclonal cell expansion for both investigative and therapeutic purposes5,6,7. The problems with Teff contamination are a major obstacle to the successful implementation of Treg cell-based immunotherapy approaches. Previous attempts to expand/generate monoclonal Treg in the literature are scarce and have failed to show maintenance of Treg features in the long term8.

This method will be of interest to anyone studying cellular, molecular, and metabolic properties of bona fide human Treg. The ultrapure Treg product generated through the use of this protocol in particular lends itself to analyses using genomic approaches. Given the relatively low expansion rates that characterize human Treg in general, this method may be of limited use to those who seek the rapid expansion of massive numbers of cells. However, given the extremely high purity of the Treg generated with this protocol, smaller numbers of Treg may have similar or even better efficacy than larger expansions of polyclonal cell lines that contain effector cells that limit the overall suppressive potential of the generated product.

Protocol

This protocol follows all institutional guidelines pertaining to the ethical conduct of research involving the use of human samples. Work with human cells and other human blood products must take place at least in a BSL-2 certified environment following BLS-2 safety guidelines at a minimum. 1. Preenrichment of human peripheral blood mononuclear cells for CD4+CD127loCD25hi cells CAUTION: Use sterile technique throughout. Discard sharps …

Representative Results

Successful implementation of this protocol will lead to the generation of stable human regulatory T cell clones and lines. Preselection/preenrichment of CD4+CD127loCD25hi cells was a straightforward method to obtain a starting population that contained most human Treg (Figure 1A–C). Not all clones displayed a Treg phenotype. Prescreening of clones by measurement of CD25hiCD127lo expressi…

Discussion

This protocol describes the propagation of ultrapure human regulatory T cells through the isolation, expansion, and careful vetting of cells obtained in a limiting dilution and feeder cell-based expansion approach from Treg-containing starting populations.

Critical steps in this approach are: 1) the choice of an appropriate starting population. Generally, the CD127loCD25hi compartment of CD4+ T cells within human PBMC contains a wide variety of Treg that suits …

Declarações

The authors have nothing to disclose.

Acknowledgements

This project was supported by the National Eye Institute of the National Institutes of Health under Award Number K08EY025324 (Nowatzky) and by a Colton Scholar Award from the Judith and Stewart Colton Center for Autoimmunity (Nowatzky).

Materials

0.22 µm Stericup, 500 mL Millipore 5500 Media storage and preparation
100x Nonessential amino acids Gibco 11140-050 Media component
15 mL conical centrifuge tubes (50/bag, case of 500) ThermoFisher Scientific 339650
1M HEPES Gibco 15630-080 Media component
25 ml Single Well Pipet Basin Fischer Scientific 13-681-508
50 mL Conical Centrifuge Tube (25/sleeve) ThermoFisher Scientific 339652
50x Penicillin Streptomycin Soln Corning Corning, 30-001-Cl Media component
CryoTube Vial Int Thread Round Btm Starfoot PP Screw Stopper Sterile PP 1.8 mL Nalge Nunc 377267
DMSO Corning 25-950-CQC
EasySep Human CD25 positive selection kit Stemcell Technologies 18231 Alternatives are FACS or MACS column-based sorting
EasySep Human CD4+CD127low T cell Pre-Enrichment Kit Stemcell Technologies 19231 Alternatives are FACS or MACS column-based sorting
EasySep Human CD4+CD127lowCD25+ Regulatory T Cell Isolation Kit (alternative to item 12) Stemcell Technologies 18063 Alternatives are FACS or MACS column-based sorting
Ficoll GE Healthcare 17-5442-03 PBMC purification from peripheral blood of leukapheresis products; density gradient medium
Human AB Serum (PHS-AB) Valley Biomedical Inc HP1022 Media component
LIVE/DEAD Fixable Blue Dead Cell Stain Kit, for UV excitation Thermo Fischer L-34962 Viability dye
Phytohemagglutinin-L (PHA-L) Millipore/Sigma 11249738001 T cell stimulation
Recombinant IL-2 (e.g., PROLEUKINâ) Prometheus T cell stimulation and maintenance/ Media component
RPMI 1640 Gibco 21870-076 Media component
Staining antibodies for flowcytometry (Treg phenotyping) See "Comments" See "Comments" Staining antibodies are enlisted in: Nowatzky et al. (2019) PubMed PMID: 30584695; PubMed Central PMCID: PMC6497402. In case EasySep Human CD25 positive selection kit is used, stain with 2A3 or BC96 anti-CD25 antibody, e.g.: Brilliant Violet 421 anti-human CD25 Antibody (Biolegend; 302629)
TCR Vβ Repertoire Kit; IOTest Beta Mark Beckman Coulter PN IM3497 Vetting of expansions for monoclonality
Tissue Culture Plate, 96 Well, U-Bottom with Low Evaporation Lid Corning 353077

Referências

  1. Miyara, M., et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 30 (6), 899-911 (2009).
  2. Polansky, J. K., et al. DNA methylation controls Foxp3 gene expression. European Journal of Immunology. 38 (6), 1654-1663 (2008).
  3. Toker, A., et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. The Journal of Immunology. 190 (7), 3180-3188 (2013).
  4. Garg, G., et al. Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Reports. 26 (7), 1854-1868 (2019).
  5. Brunstein, C. G., et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 117 (3), 1061-1070 (2011).
  6. Hippen, K. L., et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Science Translational Medicine. 3 (83), 41 (2011).
  7. Bluestone, J. A., et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine. 7 (315), 189 (2015).
  8. Dromey, J. A., et al. Generation and expansion of regulatory human CD4(+) T-cell clones specific for pancreatic islet autoantigens. Journal of Autoimmunity. 36 (1), 47-55 (2011).
  9. Sabado, R. L., et al. Preparation of tumor antigen-loaded mature dendritic cells for immunotherapy. Journal of Visual Experiments. (78), e50085 (2013).
  10. Nowatzky, J., Stagnar, C., Manches, O. OMIP-053: Identification, Classification, and Isolation of Major FoxP3 Expressing Human CD4(+) Treg Subsets. Cytometry A. 95 (3), 264-267 (2019).
  11. Zhang, Y., et al. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood. 122 (16), 2823-2836 (2013).
  12. Spreafico, R., et al. A sensitive protocol for FOXP3 epigenetic analysis in scarce human samples. European Journal of Immunology. 44 (10), 3141-3143 (2014).
  13. Collison, L. W., Vignali, D. A. In vitro Treg suppression assays. Methods in Molecular Biology. 707, 21-37 (2011).
  14. Workman, C. J., et al. In vivo Treg suppression assays. Methods in Molecular Biology. 707, 119-156 (2011).
  15. Feng, Y., et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell. 158 (4), 749-763 (2014).
  16. Toker, A., Huehn, J. To be or not to be a Treg cell: lineage decisions controlled by epigenetic mechanisms. Science Signaling. 4 (158), 4 (2011).
  17. Liu, W., et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. Journal of Experimental Medicine. 203 (7), 1701-1711 (2006).
  18. Fuhrman, C. A., et al. Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226. The Journal of Immunology. 195 (1), 145-155 (2015).
  19. Gu, J., et al. Human CD39(hi) regulatory T cells present stronger stability and function under inflammatory conditions. Cellular & Molecular Immunology. 14 (6), 521-528 (2017).
  20. Genevee, C., et al. An experimentally validated panel of subfamily-specific oligonucleotide primers (V alpha 1-w29/V beta 1-w24) for the study of human T cell receptor variable V gene segment usage by polymerase chain reaction. European Journal of Immunology. 22 (5), 1261-1269 (1992).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artigo
Nowatzky, J., Manches, O. Generation of Human Regulatory T Cell Clones. J. Vis. Exp. (159), e61075, doi:10.3791/61075 (2020).

View Video