Summary

Dynamisk navigationssystem i realtid til præcis quad-zygomatisk implantatplacering hos en patient med en alvorligt atrofisk maxilla

Published: October 18, 2021
doi:

Summary

Her præsenterer vi en protokol for at opnå præcis quad-zygomatisk implantatplacering hos patienter med alvorligt atrofisk maxilla ved hjælp af et dynamisk navigationssystem i realtid.

Abstract

Zygomatiske implantater (ZI’er) er en ideel måde at løse tilfælde af en alvorligt atrofisk edentulous maxilla og maxilla defekter, fordi de erstatter omfattende knogleforstørrelse og forkorter behandlingscyklussen. Der er dog risici forbundet med placeringen af ZI’er, såsom penetration af orbitalhulen eller infra-temporal fossa. Desuden gør placeringen af flere ZI’er denne operation risikabel og vanskeligere at udføre. Potentielle intraoperative komplikationer er ekstremt farlige og kan forårsage uoprettelige tab. Her beskriver vi en praktisk, gennemførlig og reproducerbar protokol for et kirurgisk navigationssystem i realtid til præcis placering af quad-zygomatiske implantater i den alvorligt atrofiske maxilla hos patienter med resterende knogle, der ikke opfylder kravene til konventionelle implantater. Hundredvis af patienter har modtaget ZI’er på vores afdeling baseret på denne protokol. De kliniske resultater har været tilfredsstillende, de intraoperative og postoperative komplikationer har været lave, og nøjagtigheden indikeret ved infusion af det designede billede og postoperative tredimensionelle billede har været høj. Denne metode bør anvendes under hele den kirurgiske procedure for at sikre ZI-placeringssikkerhed.

Introduction

I 1990’erne introducerede Branemark en alternativ teknik til knogletransplantation, det zygomatiske implantat (ZI), som også er blevet kaldt zygomaticus armatur1. Det blev oprindeligt brugt til behandling af traumeofre og patienter med tumorresektion, hvor der var en defekt i den maksillære struktur. Efter maxillektomi bevarede mange patienter kun forankring i zygomaens krop eller i frontforlængelsen af den zygomatiske knogle 1,2,3.

For nylig er ZI-teknikken blevet udbredt hos edentulous- og dentatpatienter med en alvorligt resorberet maxilla. Hovedindikationen for ZI-implantater er en atrofisk maxilla. Brugen af fire ZI’er i et øjeblikkeligt belastningssystem (fast protese) er praktisk for kirurger med bred klinisk erfaring, og det ser ud til at repræsentere en fremragende alternativ metode til knogletransplantatteknikker 2,4. Der er dog risici ved at placere ZI’er, enten ved frihånd eller ved hjælp af en kirurgisk skabelon til vejledning. Risici omfatter unøjagtig placering i alveolus, penetration af orbitalhulen eller infra-temporal fossa og uhensigtsmæssig placering inden for den zygomatiske fremtrædende plads5. Placeringen af flere ZI’er gør denne operation risikabel og vanskelig at udføre. Derfor er forbedring af præcisionen af ZI-placering afgørende for dets kliniske anvendelse og sikkerhed.

Det kirurgiske navigationssystem i realtid giver en anden tilgang. Det giver realtid og fuldstændigt visualiserede baner gennem analyse af præoperative og intraoperative computertomografibilleder. Med navigationssystemet i realtid er både præcision og sikkerhed blevet forbedret med sofistikeret kirurgi og behandling 5,6. En praktisk, gennemførlig og reproducerbar protokol blev udviklet ved hjælp af det kirurgiske navigationssystem i realtid til præcist at placere ZI’er i den alvorligt atrofiske maxilla 5,7,8,9,10. Med denne protokol har vi behandlet hundredvis af patienter med tilfredsstillende kliniske resultater 5,6,7,8,9,10. Her præsenterer vi protokollen med de detaljerede oplysninger om behandlingsproceduren.

Protocol

Alle de kliniske protokoller blev godkendt af Medical Ethics Review Committee på Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine (SH9H-2020-T29-3). 1. Valg af patient Kriterierne for inklusion af patienter var som følger (tabel 1).Sørg for, at patienten præsenterer en helt edentulous maxilla eller delvis edentulous maxilla med få ekstremt løse tænder (figur 1A-G<…

Representative Results

Den tilmeldte patient var en 60-årig kvinde uden systematiske sygdomme (figur 1A-D, F). Efter CBCT-scanning var den alveolære højderyg i den forreste maxilla mindre end 2,9 mm, mens den resterende knoglehøjde i det bageste maxillaområde var mindre end 2,4 mm (figur 1E, G og tabel 1). Bredden og tykkelsen af den zygomatiske knogle var henholdsvis ca. 22,4-23,6 mm og 6,1-8,0 mm (<strong class…

Discussion

Rekonstruktiv rehabilitering af den atrofiske maxilla ved hjælp af transplantater er vanskelig, fordi det kræver god kirurgisk teknik, dækning af blødt væv af høj kvalitet over transplantatet, en betydelig mængde patientsamarbejde og patienter med sundhed, der er gunstig for den endelige restaurering17,18. Placeringen af tandimplantater til rekonstruktion hos patienter med maksillær atrofi udgør en betydelig klinisk udfordring. Mønsteret af ansigtsbenre…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne takker Dr. Shengchi Fan for venligt at yde værdifuld navigationsteknisk support. Denne case-rapport blev finansieret af nøgleprojektet fra Kinas ministerium for videnskab og teknologi (2017YFB1302904), Natural Science Foundation of Shanghai (nr. 21ZR1437700), den kliniske forskningsplan for SHDC (SHDC2020CR3049B) og det kombinerede ingeniør- og medicinske projekt fra Shanghai Jiao Tong University (YG2021QN72).

Materials

Bistoury scalpel Hufriedy Group 10-130-05
Branemark system zygoma TiUnite RP 35mm Nobel Biocare AB 34724 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 40mm Nobel Biocare AB 34735 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 42.5mm Nobel Biocare AB 34736 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 45mm Nobel Biocare AB 34737 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 47.5mm Nobel Biocare AB 34738 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 50mm Nobel Biocare AB 34739 TiUnite implant with overlength to place from the maxilla to the zygoma
Branemark system zygoma TiUnite RP 52.5mm Nobel Biocare AB 34740 TiUnite implant with overlength to place from the maxilla to the zygoma
CBCT Planmeca Oy,Helsinki, Finland Pro Max 3D Max
connection to handpiece Nobel Biocare AB 29081 the accessories to connect the intrument
Drill guard Nobel Biocare AB 29162 the accessories to protect the lips and soft tissue during the surgery
Drill guard short Nobel Biocare AB 29162 the accessories to protect the lips and soft tissue during the surgery
Handpiece zygoma 20:1 Nobel Biocare AB 32615 the basic instrument for implant drill
Instrument adapter array size L BRAINLAB AG 41801
Instrument adapter array size M BRAINLAB AG 41798
Instrument calibration matrix BRAINLAB AG 41874 a special tool for drill to calibration
I-plan automatic image fusion software STL data import/export for I-plan VectorVision2®, (I-plan CMF software) BRAINLAB AG inapplicability the software for navigation surgery planning
Multi-unit abutment 3mm Nobel Biocare AB 32330 the connection accessory between the implant and the titanium base
Multi-unit abutment 5mm Nobel Biocare AB 32331 the connection accessory between the implant and the titanium base
Periosteal elevator Hufriedy Group PPR3/9A the instrument for open flap surgery
Pilot drill Nobel Biocare AB 32630 the drill for the surgery
Pilot drill short Nobel Biocare AB 32632 the drill for the surgery measuring the depth of the implant holes
Pointer with blunt tip for cranial/ENT BRAINLAB AG 53106
Reference headband star BRAINLAB AG 41877
Round bur Nobel Biocare AB DIA 578-0 the drill for the surgery
Screwdriver manual Nobel Biocare AB 29149
Skull reference array BRAINLAB AG 52122 a special made metal reference for navigation camera to receive the signal
Skull reference base BRAINLAB AG 52129
Suture vicryl 4-0 Johnson &Johnson, Ethicon VCP310H
Temporary copping multi-unit titanium (with prosthetic screw) Nobel Biocare AB 29046 the temporary titanium base to fix the teeth
Titanium mini-screw CIBEI MB105-2.0*9 the mini-screw for navigation registration
Twist drill Nobel Biocare AB 32628 the drill for the surgery
Twist drill short Nobel Biocare AB 32629 the drill for the surgery
Zygoma depth indicator angled Nobel Biocare AB 29162
Zygoma depth indicator straight Nobel Biocare AB 29162 the measurement scale for
Zygoma handle Nobel Biocare AB 29162 the instrument for zygomatic implant placement

References

  1. Francischone, C. L., Vasconcelos, L. W., Filho, H. N., Francischone, C. E., Sartori, I. M. Chapter 15. The zygoma fixture. The osseointegration book. From calvarium to calcaneus. , 317-320 (2005).
  2. Weischer, T., Schettler, D., Mohr, C. Titanium implants in the zygoma as retaining elements after hemimaxillectomy. The International Journal of Oral & Maxillofacial Implants. 12 (2), 211-214 (1997).
  3. Jensen, O. T., Brownd, C., Blacker, J. Nasofacial prostheses supported by osseointegrated implants. The International Journal of Oral & Maxillofacial Implants. 7 (2), 203-211 (1992).
  4. Duarte, L. R., Filho, H. N., Francischone, C. E., Peredo, L. G., Branemark, P. I. The establishment of a protocol for the total rehabilitation of atrophic maxillae employing four zygomatic fixtures in an immediate loading system–a 30-month clinical and radiographic follow-up. Clinical Implant Dentistry and Related Research. 9 (4), 186-196 (2007).
  5. Hung, K. F., et al. Accuracy of a real-time surgical navigation system for the placement of quad zygomatic implants in the severe atrophic maxilla: A pilot clinical study. Clinical Implant Dentistry and Related Research. 19 (3), 458-465 (2017).
  6. Wu, Y., Wang, F., Huang, W., Fan, S. Real-time navigation in zygomatic implant placement: Workflow. Oral and Maxillofacial Surgery Clinics of North America. 31 (3), 357-367 (2019).
  7. Wang, F., et al. Reliability of four zygomatic implant-supported prostheses for the rehabilitation of the atrophic maxilla: a systematic review. The International Journal of Oral & Maxillofacial Implants. 30 (2), 293-298 (2015).
  8. Xiaojun, C., et al. An integrated surgical planning and virtual training system. IEEE 2010 International Conference on Audio, Language and Image Processing (ICALIP). , 1257-1261 (2010).
  9. Fan, S., et al. The effect of the configurations of fiducial markers on accuracy of surgical navigation in zygomatic implant placement: An in vitro study. The International Journal of Oral & Maxillofacial Implants. 34 (1), 85-90 (2019).
  10. Xiaojun, C., Ming, Y., Yanping, L., Yiqun, W., Chengtao, W. Image guided oral implantology and its application in the placement of zygoma implants. Computer Methods and Programs in Biomedicine. 93 (2), 162-173 (2009).
  11. Cawood, J. I., Howell, R. A. A classification of the edentulous jaws. The International Journal of Oral & Maxillofacial Surgery. 17 (4), 232-236 (1988).
  12. Davo, R., Pons, O., Rojas, J., Carpio, E. Immediate function of four zygomatic implants: a 1-year report of a prospective study. European Journal of Oral Implantology. 3 (4), 323-334 (2010).
  13. Jensen, O. T. Complete arch site classification for all-on-4 immediate function. The Journal of Prosthetic Dentistry. 112 (4), 741-751 (2014).
  14. Triplett, R. G., Schow, S. R., Laskin, D. M. Oral and maxillofacial surgery advances in implant dentistry. The International Journal of Oral & Maxillofacial Implants. 15 (1), 47-55 (2000).
  15. Aparicio, C. A proposed classification for zygomatic implant patient based on the zygoma anatomy guided approach (ZAGA): a cross-sectional survey. European Journal of Oral Implantology. 4 (3), 269-275 (2011).
  16. Hung, K. F., et al. Measurement of the zygomatic region for the optimal placement of quad zygomatic implants. Clinical Implant Dentistry and Related Research. 19 (5), 841-848 (2017).
  17. Kahnberg, K. E., Nystrom, E., Bartholdsson, L. Combined use of bone grafts and Br fixtures in the treatment of severely resorbed maxillae. The International Journal of Oral & Maxillofacial Implants. 4 (4), 297-304 (1989).
  18. Nystrom, E., Kahnberg, K. E., Gunne, J. Bone grafts and Br implants in the treatment of the severely resorbed maxilla: A 2-year longitudinal study. The International Journal of Oral & Maxillofacial Implants. 8 (1), 45-53 (1993).
  19. Jensen, S. S., Terheyden, H. Bone augmentation procedures in localized defects in the alveolar ridge: Clinical results with different bone grafts and bone-substitute materials. The International Journal of Oral & Maxillofacial Implants. 24, 218-236 (2009).
  20. Bedrossian, E. Rehabilitation of the edentulous maxilla with the zygoma concept: A 7-year prospective study. The International Journal of Oral & Maxillofacial Implants. 25 (6), 1213-1221 (2010).
  21. Dhamankar, D., Gupta, A. R., Mahadevan, J. Immediate implant loading: A case report. Journal of Indian Prosthodontic Society. 10 (1), 64-66 (2010).
  22. Aparicio, C., et al. Zygomatic implants: indications, techniques and outcomes, and the zygomatic success code. Periodontol 2000. 66 (1), 41-58 (2014).
  23. Chrcanovic, B. R., Abreu, M. H. Survival and complications of zygomatic implants: A systematic review. Journal of Oral and Maxillofacial Surgery. 17 (2), 81-93 (2013).
  24. Brånemark, P. I., et al. Zygoma fixture in the management of advanced atrophy of the maxilla: Technique and long-term results. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery. 38 (2), 70-85 (2004).
  25. Balshi, T. J., Wolfinger, G. J., Petropoulos, V. C. Quadruple zygomatic implant support for retreatment of resorbed iliac crest bone graft transplant. Implant Dentistry. 12 (1), 47-53 (2003).
  26. Chrcanovic, B. R., Oliveira, D. R., Custódio, A. L. Accuracy evaluation of computed tomography-derived stereolithographic surgical guides in zygomatic implant placement in human cadavers. The Journal of Oral Implantology. 36 (5), 345-355 (2010).
  27. Gellrich, N. C., et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast and Reconstructive Surgery. 110 (6), 1417-1429 (2002).
  28. Watzinger, F., et al. Placement of endosteal implants in the zygoma after maxillectomy: A Cadaver study using surgical navigation. Plast and Reconstructive Surgery. 107 (3), 659-667 (2001).
  29. Wagner, A., et al. Computer-aided placement of endosseous oral implants in patients after ablative tumour surgery: Assessment of accuracy. Clinical Oral Implants Research. 14 (3), 340-348 (2003).
  30. Casap, N., Wexler, A., Tarazi, E. Application of a surgical navigation system for implant surgery in a deficient alveolar ridge postexcision of an odontogenic myxoma. The Journal of Oral & Maxillofacial Surgery. 63 (7), 982-988 (2005).
  31. Pellegrino, G., Tarsitano, A., Basile, F., Pizzigallo, A., Marchetti, C. Computer-aided rehabilitation of maxillary oncological defects using zygomatic implants: A defect-based classification. The Journal of Oral & Maxillofacial Surgery. 73 (12), 1-11 (2015).
  32. Fan, S., et al. The effect of the configurations of fiducial markers on accuracy of surgical navigation in zygomatic implant placement: An in vitro study. The International Journal of Oral & Maxillofacial Implants. 34 (1), 85-90 (2019).
  33. D’Haese, J., Van De Velde, T., Elaut, L., De Bruyn, H. A prospective study on the accuracy of mucosally supported stereolithographic surgical guides in fully edentulous maxillae. Clinical Implant Dentistry and Related Research. 14 (2), 293-303 (2012).
  34. Stübinger, S., Buitrago-Tellez, C., Cantelmi, G. Deviations between placed and planned implant positions: an accuracy pilot study of skeletally supported stereolithographic surgical templates. Clinical Implant Dentistry and Related Research. 16 (4), 540-551 (2014).
check_url/62489?article_type=t

Play Video

Cite This Article
Shen, Y., Dai, Q., Tao, B., Huang, W., Wang, F., Lan, K., Sun, Y., Ling, X., Yan, L., Wang, Y., Wu, Y. Real-Time Dynamic Navigation System for the Precise Quad-Zygomatic Implant Placement in a Patient with a Severely Atrophic Maxilla. J. Vis. Exp. (176), e62489, doi:10.3791/62489 (2021).

View Video