Summary

测量CD95死亡诱导信号传导复合物的组成和该复合物中Procaspase-8的处理

Published: August 02, 2021
doi:

Summary

在这里,提出了一种实验工作流程,可以直接在死亡诱导信号复合物(DISC)上检测caspase-8处理并确定该复合物的组成。这种方法具有广泛的应用,从解开细胞死亡途径的分子机制到细胞凋亡网络的动态建模。

Abstract

外源性细胞凋亡由死亡受体(DR)的激活介导,例如CD95 / Fas / APO-1或肿瘤坏死因子相关的凋亡诱导配体(TRAIL)受体1 /受体2(TRAIL-R1 / R2)。这些受体及其同源配体的刺激导致死亡诱导信号复合物(DISC)的组装。DISC包括DR,具有死亡结构域的适应蛋白Fas相关蛋白(FADD),procaspases-8/-10和细胞FAD样白细胞介素(IL)-1β-转化酶抑制蛋白(c-FLIP)。DISC用作procaspase-8处理和激活的平台。后者 通过其 在DISC上组装的死亡效应域(DED)细丝中的二聚/寡聚化发生。

procaspase-8的激活之后是其处理,其分几个步骤进行。在这项工作中,描述了一个已建立的实验工作流程,该工作流程允许测量DISC形成和处理该复合物中的procaspase-8。该工作流程基于免疫沉淀技术,并辅以蛋白质印迹分析。该工作流程允许仔细监测PROCASPASE-8募集到DISC及其处理的不同步骤,并且与研究外源性凋亡的分子机制高度相关。

Introduction

研究最好的死亡受体(DRs)之一是CD95(Fas,APO-1)。外源性凋亡途径始于DR与其同源配体的相互作用,CD95L与CD95相互作用或TRAIL与TRAIL-Rs结合。这导致在相应的DR处形成DISC,DISC由CD95,FADD,procaspase-8 / -10和c-FLIP蛋白1,2组成。此外,DISC是通过含死亡域(DD)的蛋白质(例如CD95和FADD)与含DED的蛋白质(例如FAD,procaspase-8 / -10和c-FLIP)之间的相互作用组装的(图1)。Procaspase-8通过其DED的结合经历寡聚化,导致DED细丝的形成,然后Procaspase-8的激活和处理。这触发了半胱天冬酶级联反应,导致细胞死亡(1)3、4。因此,procaspase-8是由CD95或TRAIL-Rs介导的外源性凋亡途径的中枢引发子半胱天冬酶,在相应的大分子平台DISC上激活。

已知Procaspase-8的两种亚型,即procaspase-8a(p55)和-8b(p53),被招募到DISC5中。两种亚型均由两个DED组成。DED1和DED2位于procaspase-8a/b的N端部分,后跟催化p18和p10结构域。对procaspase-8 DEDs的详细冷冻电子显微镜(cryo-EM)分析揭示了Procaspase-8蛋白组装成称为DED细丝4,6的丝状结构。值得注意的是,线性procaspase-8链最初被认为参与二聚化,然后在DISC处进行procaspase-8激活。现在,已知这些链只是procaspase-8 DED细丝的子结构,后者由三个链组成三个螺旋3,4,6,7。

在DED灯丝处二聚化时,procaspase-8a / b的构象变化导致Procaspase-8活性中心的形成及其激活3,8。接下来是procaspase-8处理,其通过两种途径介导:第一种途径通过p43 / p41裂解产物的产生,第二种途径通过p30裂解产物的初始产生。p43 / p41途径由Asp374处procaspase-8a / b的裂解启动,导致p43 / p41和p12裂解产物(图2)。此外,这些片段在Asp384和Asp210/216处被自催化裂解,从而形成活性半胱天冬酶-8异四聚体p102/p1829,10,11。此外,研究表明,在p43 / p41处理途径的同时,procaspase-8a / b也在Asp216处被切割,这导致形成C端裂解产物p30,然后其蛋白水解至p10和p1810(图2)。

DED灯丝处的Procaspase-8a / b激活受到名为c-FLIPs12的蛋白质的严格调节。c-FLIP蛋白以三种亚型出现:c-FLIP Long(c-FLIPL),c-FLIP Short(c-FLIPS)和c-FLIP Raji(c-FLIP R)。所有三种亚型在其N端区域都包含两个DED。c-FLIPL还具有催化非活性的半胱天冬酶样结构域12、13。c-FLIP-c-FLIPS和c-FLIPR的短同种型都以抗凋亡的方式通过破坏DISC 6,14,15处的DED长丝形成而起作用。此外,c-FLIPL可以以浓度依赖性方式调节半胱天冬酶-8的活化。这可以导致促凋亡和抗凋亡作用16,17,18。通过形成催化活性的procaspase-8 / c-FLIPL异源二聚体,c-FLIPL导致procaspase-8活性中心的稳定及其活化。c-FLIPL的促凋亡或抗凋亡功能直接取决于其在DED细丝上的量以及随后组装的procaspase-8 / c-FLIPL异源二聚体19的量。DISC处的c-FLIPL浓度低或中等浓度导致DED长丝处产生足够量的procaspase-8 / c-FLIPL异源二聚体,这支持了Caspase-8的活化。相反,增加的c-FLIPL量直接导致其在DISC20处具有抗凋亡作用 。

综上所述,在DISC上procaspase-8a / b的激活和处理是一个高度监管的过程,涉及几个步骤。本文讨论了直接在DISC上测量procaspase-8处理以及分析该复合物的组成。这将使用CD95 DISC作为典型的DR复合物来呈现。

Protocol

T细胞实验根据伦理协议42502-2-1273 Uni MD进行。 1. 为实验准备细胞 注意:这种免疫沉淀的平均细胞数为1×107。 贴壁细胞必须在实验前一天接种,以便在实验当天有1×10个7 个细胞。 为实验准备贴壁细胞 在实验开始前一天,将106 个贴壁细胞×10个6个贴壁细胞在20 mL培养基中(参见成分 材料表 ),用?…

Representative Results

为了分析CASPASE-8募集到DISC及其在CD95 DISC上的处理,本文描述了一种经典的工作流程,该工作流程将CD95 DISC的IP与蛋白质印迹分析相结合。这允许在DISC上检测半胱天冬酶-8激活的几个关键特征:半胱天冬酶-8激活大分子平台的组装,Procaspase-8向DISC的募集,以及该引发子半胱天冬酶的处理(图1和图2)。该工作流程涉及以时间依赖性方式用CD95L处理敏感细胞…

Discussion

这种方法首先由Kischkel等人27 描述,并从那时起由几个小组成功开发。为了在该复合物中进行有效的DISC免疫沉淀和监测半胱天冬酶-8处理,必须考虑几个重要问题。

首先,在免疫沉淀期间必须遵循所有洗涤步骤。特别重要的是琼脂糖珠的最终洗涤步骤和蜂蜡珠的干燥。必须正确完成此操作以增加免疫沉淀的信噪比,从而允许在DISC上检测caspase-8募集和处理。?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢威廉·桑德基金会(2017.008.02),动态系统中心(CDS),由欧盟计划ERDF(欧洲区域发展基金)和DFG(LA 2386)资助,以支持我们的工作。我们感谢Karina Guttek支持我们的实验。我们感谢Dirk Reinhold教授(OvGU,Magdeburg)为我们提供了原代T细胞。

Materials

12.5% SDS gel self made for two separating gels:
3.28 mL distilled H2O
2.5 mL Tris; pH 8.8; 1.5 M
4.06 mL acrylamide
100 µL 10% SDS
100 µL 10% APS
7.5 µL TEMED

for two collecting gels:
3.1 mL distilled H2O
1.25 mL Tris; pH 6.8; 1.5 M
0.5 mL acrylamide
50 µL 10% SDS
25 µL 10% APS
7.5 µL TEMED
14.5 cm cell dishes Greiner 639160
acrylamide Carl Roth A124.1
anti-actin Ab Sigma Aldrich A2103 dilution: 1:4000 in PBST + 1:100 NaN3
anti-APO-1 Ab provided in these experiments by Prof. P. Krammer or can be purchased by Enzo ALX-805-038-C100 used only for immunoprecipitation
anti-caspase-10 Ab Biozol MBL-M059-3 dilution: 1:1000 in PBST + 1:100 NaN3
anti-caspase-3 Ab cell signaling 9662 S dilution: 1:2000 in PBST + 1:100 NaN3
anti-caspase-8 Ab C15 provided in these experiments by Prof. P. Krammer or can be purchased by ENZO ALX-804-242-C100 dilution: 1:20 in PBST + 1:100 NaN3
anti-CD95 Ab Santa Cruz sc-715 dilution: 1:2000 in PBST + 1:100 NaN3
anti-c-FLIP NF6 Ab provided in these experiments by Prof. P. Krammer or can be purchased by ENZO ALX-804-961-0100 dilution: 1:10 in PBST + 1:100 NaN3
anti-FADD 1C4 Ab provided in these experiments by Prof. P. Krammer or can be purchased by ENZO ADI-AAM-212-E dilution: 1:10 in PBST + 1:100 NaN3
anti-PARP Ab cell signaling 9542 dilution: 1:1000 in PBST + 1:100 NaN3
APS Carl Roth 9592.3
β-mercaptoethanol Carl Roth 4227.2
Bradford solution
Protein Assay Dye Reagent Concentrate 450ml
Bio Rad 500-0006 used according to manufacturer's instructions
CD95L provided in these experiments by Prof. P. Krammer or can be purchased by ENZO ALX-522-020-C005
chemoluminescence detector
Chem Doc XRS+
Bio Rad
cOmplete Protese Inhibitor Cocktail (PIC) Sigma Aldrich 11 836 145 001 prepared according to manufacturer's instructions
DPBS (10x) w/o Ca, Mg PAN Biotech P04-53500 dilution 1:10 with H2O, storage in the fridge
eletrophoresis buffer self made 10x electrophoresis buffer:
60.6 g Tris
288 g glycine
20 g SDS
ad 2 L H2O
1:10 dilution before usage
glycine Carl Roth 3908.3
Goat Anti-Mouse IgG1 HRP SouthernBiotech 1070-05 dilution 1:10.000 in PBST + 5% milk
Goat Anti-Mouse IgG2b SouthernBiotech 1090-05 dilution 1:10.000 in PBST + 5% milk
Goat Anti-Rabbit IgG-HRP SouthernBiotech 4030-05 dilution 1:10.000 in PBST + 5% milk
Interleukin-2 Human(hIL-2) Merckgroup/ Roche 11011456001 for activation of T cells
KCl Carl Roth 6781.2
KH2PO4 Carl Roth 3904.1
loading buffer
4x Laemmli Sample Buffer,10 mL
Bio Rad 161-0747 prepared according to manufacturer's instructions
Luminata Forte Western HRP substrate Millipore WBLUFO500
lysis buffer self made 13.3 mL Tris-HCl; pH 7.4; 1.5 M
27.5 mL NaCl; 5 M
10 mL EDTA; 2 mM
100 mL Triton X-100
add 960 mL H2O
medium for adhaerent cells DMEM F12 (1:1) w stable Glutamine,  2,438 g/L PAN Biotech P04-41154 adding 10% FCS, 1% Penicillin-Streptomycin and 0.0001% Puromycin to the medium
medium for primary T cells gibco by Life Technologie 21875034 adding 10% FCS and 1% Penicillin-Streptomycin to the medium
milk powder Carl Roth T145.4
Na2HPO4 Carl Roth P030.3
NaCl Carl Roth 3957.2
PBST self made 20x PBST:
230 g NaCl
8 g KCl
56.8 g Na2HPO4
8 g KH2PO4
20 mL Tween-20
ad 2 L H2O
dilution 1:20 before usage
PBST + 5% milk self made 50 g milk powder + 1 L PBST
PHA Thermo Fisher Scientific R30852801 for actavation of T ells
Power Pac HC Bio Rad
Precision Plus Protein Standard All Blue Bio Rad 161-0373 use between 3-5 µL
Protein A Sepharose CL-4B beads Novodirect/ Th.Geyer GE 17-0780-01 affinity resin beads prepared according to manufacturer's instructions
scraper VWR 734-2602
SDS Carl Roth 4360.2
shaker Heidolph
sodium azide Carl Roth K305.1
TEMED Carl Roth 2367.3
Trans Blot Turbo mini-size transfer stacks Bio Rad 170-4270 used according to manufacturer's instructions
TransBlot Turbo 5x Transfer Buffer Bio Rad 10026938 prepared according to manufacturer's instructions
TransBlot Turbo Mini-size nictrocellulose membrane Bio Rad 170-4270 used according to manufacturer's instructions
Trans-Blot-Turbo Bio Rad
Tris Chem Solute 8,08,51,000
Triton X-100 Carl Roth 3051.4
Tween-20 Pan Reac Appli Chem A4974,1000

Referências

  1. Lavrik, I. N., Krammer, P. H. Regulation of CD95/Fas signaling at the DISC. Cell Death and Differentiation. 19 (1), 36-41 (2012).
  2. Krammer, P. H., Arnold, R., Lavrik, I. N. Life and death in peripheral T cells. Nature Reviews Immunology. 7 (7), 532-542 (2007).
  3. Dickens, L. S., et al. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Molecular Cell. 47 (2), 291-305 (2012).
  4. Fu, T. -. M., et al. Cryo-EM structure of caspase-8 tandem DED filament reveals assembly and regulation mechanisms of the death-inducing signaling complex. Molecular Cell. 64 (2), 236-250 (2016).
  5. Scaffidi, C., Medema, J. P., Krammer, P. H., Peter, M. E. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. Journal of Biological Chemistry. 272 (43), 26953-26958 (1997).
  6. Fox, J. L., et al. Cryo-EM structural analysis of FADD:Caspase-8 complexes defines the catalytic dimer architecture for co-ordinated control of cell fate. Nature Communications. 12 (1), 1-17 (2021).
  7. Schleich, K., et al. Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Molecular Cell. 47 (2), 306-319 (2012).
  8. Hughes, M. A., et al. Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Molecular Cell. 35 (3), 265-279 (2009).
  9. Lavrik, I., et al. The active caspase-8 heterotetramer is formed at the CD95 DISC [2]. Cell Death and Differentiation. 10 (1), 144-145 (2003).
  10. Hoffmann, J. C., Pappa, A., Krammer, P. H., Lavrik, I. N. A new C-terminal cleavage product of procaspase-8, p30, defines an alternative pathway of procaspase-8 activation. Molecular and Cellular Biology. 29 (16), 4431-4440 (2009).
  11. Golks, A., et al. The role of CAP3 in CD95 signaling: New insights into the mechanism of procaspase-8 activation. Cell Death and Differentiation. 13 (3), 489-498 (2006).
  12. Oztürk, S., Schleich, K., Lavrik, I. N. Cellular FLICE-like inhibitory proteins (c-FLIPs): Fine-tuners of life and death decisions. Experimental Cell Research. 318 (11), 1324-1331 (2012).
  13. Golks, A., Brenner, D., Fritsch, C., Krammer, P. H., Lavrik, I. N. c-FLIPR, a new regulator of death receptor-induced apoptosis. Journal of Biological Chemistry. 280 (15), 14507-14513 (2005).
  14. Hughes, M. A., et al. Co-operative and hierarchical binding of c-FLIP and caspase-8: A unified model defines how c-FLIP isoforms differentially control cell fate. Molecular Cell. 61 (6), 834-849 (2016).
  15. Hillert, L. K., et al. Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly. Oncogene. 39 (8), 1756-1772 (2020).
  16. Yu, J. W., Jeffrey, P. D., Shi, Y. Mechanism of procaspase-8 activation by c-FLIPL. Proceedings of the National Academy of Sciences of the United States of America. 106 (20), 8169-8174 (2009).
  17. Micheau, O., et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. Journal of Biological Chemistry. 277 (47), 45162-45171 (2002).
  18. Chang, D. W., et al. C-FLIPL is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO Journal. 21 (14), 3704-3714 (2002).
  19. Hillert, L. K., et al. Dissecting DISC regulation via pharmacological targeting of caspase-8/c-FLIPL heterodimer. Cell Death and Differentiation. 27 (7), 2117-2130 (2020).
  20. Fricker, N., et al. Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. Journal of Cell Biology. 190 (3), 377-389 (2010).
  21. Arndt, B., et al. Analysis of TCR activation kinetics in primary human T cells upon focal or soluble stimulation. Journal of Immunological Methods. 387 (1-2), 276-283 (2013).
  22. Pietkiewicz, S., Eils, R., Krammer, P. H., Giese, N., Lavrik, I. N. Combinatorial treatment of CD95L and gemcitabine in pancreatic cancer cells induces apoptotic and RIP1-mediated necroptotic cell death network. Experimental Cell Research. 339 (1), 1-9 (2015).
  23. Schleich, K., et al. Molecular architecture of the DED chains at the DISC: regulation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain. Cell Death and Differentiation. 23 (4), 681-694 (2016).
  24. Lavrik, I. N., et al. Analysis of CD95 threshold signaling: Triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling. Journal of Biological Chemistry. 282 (18), 13664-13671 (2007).
  25. Sprick, M. R., et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO Journal. 21 (17), 4520-4530 (2002).
  26. Neumann, L., et al. Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Molecular Systems Biology. 6 (1), 352 (2010).
  27. Kischkel, F. C., et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO Journal. 14 (22), 5579-5588 (1995).
  28. Seyrek, K., Richter, M., Lavrik, I. N. Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death and Differentiation. 26 (6), 981-993 (2019).
  29. Kallenberger, S. M., et al. Intra- and interdimeric caspase-8 self-cleavage controls strength and timing of CD95-induced apoptosis. Science Signaling. 7 (316), 23 (2014).
check_url/pt/62842?article_type=t

Play Video

Citar este artigo
Hillert-Richter, L. K., Lavrik, I. N. Measuring Composition of CD95 Death-Inducing Signaling Complex and Processing of Procaspase-8 in this Complex. J. Vis. Exp. (174), e62842, doi:10.3791/62842 (2021).

View Video