Caracterização das Células Endoteliais de Crescimento Sanguíneo (CBO) do Sangue Periférico Porcino

Published: January 06, 2022
doi:

Abstract

O endotélio é uma estrutura dinâmica integrada que desempenha um papel importante em muitas funções fisiológicas, como angiogênese, hemostasia, inflamação e homeostase. O endotélio também desempenha um papel importante em fisiopatologias como aterosclerose, hipertensão e diabetes. As células endoteliais formam o revestimento interno dos vasos sanguíneos e linfáticos e exibem heterogeneidade em estrutura e função. Vários grupos têm avaliado a funcionalidade de células endoteliais derivadas do sangue periférico humano com foco em células progenitoras endoteliais derivadas de células-tronco hematopoéticas ou células endoteliais maduras (ou células formadoras de colônias endoteliais). Essas células fornecem um recurso autólogo para a terapêutica e modelagem de doenças. As células xenogênicas podem fornecer uma fonte alternativa de terapêutica devido à sua disponibilidade e homogeneidade alcançadas pelo uso de animais geneticamente semelhantes criados em condições semelhantes. Assim, um protocolo robusto para o isolamento e expansão de células endoteliais de crescimento sanguíneo altamente proliferativo do sangue periférico suíno tem sido apresentado. Essas células podem ser usadas para inúmeras aplicações, tais como engenharia de tecido cardiovascular, terapia celular, modelagem de doenças, triagem de drogas, estudo da biologia celular endotelial e co-culturas in vitro para investigar respostas inflamatórias e de coagulação em xenotransplante.

Introduction

O endotélio é uma estrutura dinâmica e altamente complexa e um componente vital da parede vascular. Ele reveste a superfície interna dos vasos sanguíneos para fornecer uma interface física entre o sangue circulante e os tecidos circundantes. Sabe-se que essa estrutura heterogênea desempenha várias funções, como angiogênese, inflamação, vasorregulação e hemostasia1,2,3,4. As células endoteliais da veia umbilical humana são um tipo celular amplamente estudado para avaliar a funcionalidade das células endoteliais. No entanto, a variabilidade do lote específico do paciente, o fenótipo inconsistente e a eficiência mínima de divisão sugerem a necessidade de determinar uma fonte celular que possa melhorar todas essas características5.

A obtenção de uma população homogênea de células endoteliais primárias pode ser tecnicamente desafiadora, e as células endoteliais primárias não possuem alta capacidadeproliferativa6. Assim, para estudar a regeneração vascular e avaliar processos fisiopatológicos, vários grupos têm tentado obter e avaliar diferentes tipos de células endoteliais derivadas do sangue periférico, por exemplo, células progenitoras endoteliais (CPEs) ou células endoteliais de crescimento sanguíneo (BCAB)6,7,8,9 . As CPEs precoces fusiformes originam-se de células-tronco hematopoéticas (CTHs) e têm potência de crescimento limitada e capacidade angiogênica limitada de produzir células endoteliais maduras. Além disso, assemelham-se muito aos monócitos inflamatórios. Além disso, sua capacidade de se diferenciar em células endoteliais maduras, proliferantes e funcionais ainda é discutível6,7,9,10. A cultura contínua de células mononucleares do sangue periférico (CMSP) pode dar origem a uma população secundária de células conhecidas como CPEs de crescimento tardio, BOECs ou células formadoras de colônias endoteliais (CEFCs)6,7,9,10. Medina et al., em 2018, reconheceram as limitações das CPEs, a ambiguidade de sua nomenclatura, juntamente com uma falta geral de concordância com muitos tipos celulares distintos continuamente agrupados sob CPEs11. Em contraste, os BOECs tornaram-se reconhecidos por seu papel no reparo vascular, saúde e doença e terapia celular. Estudos futuros e uso terapêutico dessas células dependerão de protocolos para derivar consistentemente esses tipos celulares de células progenitoras circulantes.

Células primárias como as BOECs podem ser usadas como substituto para a obtenção de células endoteliais maduras altamente proliferativas6. As EEP são fenotipicamente distintas das CPEs precoces e exibem características endoteliais típicas, como morfologia de paralelepípedos e expressão de junções aderentes ecavéolas12. O perfil gênico de Hebbel et al.13,14,15 constatou que as BOECs ou ECFCs são as verdadeiras células endoteliais, pois promovem a formação de microvasculares e grandes vasos. Assim, as EEP podem ser utilizadas como ferramenta para avaliar processos fisiopatológicos e variação genética16. Também são considerados uma excelente fonte celular para terapia celular para regeneração vascular17. Portanto, um protocolo padronizado para derivar consistentemente essas células altamente proliferativas é essencial.

Enquanto os BOECs fornecem uma ferramenta poderosa para estudar a variação patofisiológica e genética humana, uma fonte mais homogênea de BOECs pode fornecer resultados experimentais e terapêuticos mais robustos e confiáveis. Homogeneidade superior pode ser obtida com o uso de fontes de células xenogênicas derivadas de animais geneticamente semelhantes criados em condições semelhantes18. Enquanto fontes de células xenogênicas são propensas a provocar uma resposta imune do hospedeiro, estratégias de imunomodulação estão sendo desenvolvidas com o objetivo de gerar animais imunocompatíveis e produtos de origem animal, incluindo células. Os porcos, em particular, são uma fonte abundante de sangue periférico e são comumente usados para estudar dispositivos médicos e outras terapias devido às semelhanças anatômicas e fisiológicas com os seres humanos. Assim, este estudo refina o protocolo para o isolamento e expansão de BOECs altamente proliferativas a partir de sangue periférico suíno. O protocolo detalhado abaixo é um método simples e confiável para obter um grande número de BOECs a partir de um volume relativamente pequeno de sangue. As culturas podem ser expandidas através de várias passagens para gerar milhões de células a partir de uma única amostra de sangue.

Protocol

Todos os estudos em animais foram aprovados pelos respectivos Comitês Institucionais de Cuidados e Uso de Animais (IACUC) no Medical College of Wisconsin e na Mayo Clinic. OBS: Neste estudo, foram utilizados suínos domésticos cruzados Yorkshire/Landrace/Duroc (Sus domesticus), machos e fêmeas, de 40-80 kg, com 3-6 meses de idade. 1. Coleta de sangue periférico suíno Prepare materiais.Diluir a solução de heparina a …

Representative Results

A morfologia das células cultivadas foi observada desde o início do cultivo até a observação de colônias de BOEC (Figura 1). Uma população menor de células aderentes começou a se fixar às placas de cultura e crescer, enquanto as células não aderentes foram removidas com mudanças no meio de cultura (Figura 1B). As colônias apareceram pela primeira vez no 6º dia como uma coleção de células endoteliais-símile proliferando radialmente para fora a…

Discussion

As CBAA são uma poderosa ferramenta que pode ser utilizada em diversas abordagens científicas e terapêuticas 7,8,16. As BOECs têm sido utilizadas para analisar a expressão gênica da CE para elucidar os principais fatores responsáveis pelo desenvolvimento de doenças vasculares e câncer5,19,20,21.</su…

Declarações

The authors have nothing to disclose.

Acknowledgements

Os autores desejam agradecer o financiamento do NIH/NHLBI R00 HL129068.

Materials

19 G needle Covidien 1188818112
50 mL conical tubes Corning 352098
6 well plate BD Falcon 353046
60 mL syringes Covidien 8881560125
Ammonium chloride solution (0.8%) Stemcell Technologies 07850
Antibiotic/antimycotic solution (100x) Gibco 15240-062
Centrifuge Thermo Scientific 75-253-839
EGM-2 culture medium Lonza Walkersville CC-3162
Extension tube Hanna Pharmaceutical Supply Co. 03382C6227
Fetal bovine serum (FBS) Atlas Biologicals F-0500-A
Ficoll-Paque 1077 Cytiva 17144003 Density gradient solution
Heparin sodium injection (1,000 units/mL) Pfizer 00069-0058-01
Human plasma fibronectin Gibco 33016-015
Ice N/A N/A
Phosphate-buffered saline (PBS) Gibco 10010-023
Pipette set Eppendorf 2231300004
Sterile water Gibco 15230-162
Thin pipette Celltreat Scientific 229280

Referências

  1. Aird, W. C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circulation Research. 100 (2), 174-190 (2007).
  2. Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circulation Research. 100 (2), 158-173 (2007).
  3. Pober, J. S., Tellides, G. Participation of blood vessel cells in human adaptive immune responses. Trends in Immunology. 33 (1), 49-57 (2012).
  4. Navarro, S., et al. The endothelial cell protein C receptor: its role in thrombosis. Thrombosis Research. 128 (5), 410-416 (2011).
  5. Hasstedt, S. J., et al. Cell adhesion molecule 1: a novel risk factor for venous thrombosis. Blood. 114 (14), 3084-3091 (2009).
  6. Ormiston, M. L., et al. Generation and culture of blood outgrowth endothelial cells from human peripheral blood. Journal of Visualized Experiments: JoVE. (106), e53384 (2015).
  7. Lin, Y., Weisdorf, D. J., Solovey, A., Hebbel, R. P. Origins of circulating endothelial cells and endothelial outgrowth from blood. Journal of Clinical Investigation. 105 (1), 71-77 (2000).
  8. Martin-Ramirez, J., Hofman, M., Biggelaar, M. V. D., Hebbel, R. P., Voorberg, J. Establishment of outgrowth endothelial cells from peripheral blood. Nature Protocols. 7 (9), 1709-1715 (2012).
  9. Gulati, R., et al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circulation Research. 93 (11), 1023-1025 (2003).
  10. Hebbel, R. P. Blood endothelial cells: utility from ambiguity. The Journal of Clinical Investigation. 127 (5), 1613-1615 (2017).
  11. Medina, R. J., et al. Endothelial progenitors: A consensus statement on nomenclature. Stem Cells Translational Medicine. 6 (5), 1316-1320 (2018).
  12. Medina, R. J., et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Medical Genomics. 3, 18 (2010).
  13. Jiang, A., Pan, W., Milbauer, L. C., Shyr, Y., Hebbel, R. P. A practical question based on cross-platform microarray data normalization: are BOEC more like large vessel or microvascular endothelial cells or neither of them. Journal of Bioinformatics and Computational Biology. 5 (4), 875-893 (2007).
  14. Pan, W., Shen, X., Jiang, A., Hebbel, R. P. Semi-supervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics. 22 (19), 2388-2395 (2006).
  15. Hirschi, K. K., Ingram, D. A., Yoder, M. C. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 28 (9), 1584-1595 (2008).
  16. Fernandez, L. A., et al. Blood outgrowth endothelial cells from hereditary haemorrhagic telangiectasia patients reveal abnormalities compatible with vascular lesions. Cardiovascular Research. 68 (2), 235-248 (2005).
  17. Critser, P. J., Yoder, M. C. Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Current Opinion in Organ Transplantation. 15 (1), 68-72 (2010).
  18. Zhao, Y., et al. Isolation and culture of primary aortic endothelial cells from miniature pigs. Journal of Visualized Experiments: JoVE. (150), e59673 (2019).
  19. Chang Milbauer, L., et al. Genetic endothelial systems biology of sickle stroke risk. Blood. 111 (7), 3872-3879 (2008).
  20. Wei, P., et al. Differential endothelial cell gene expression by African Americans versusCaucasian Americans: a possible contribution to health disparity in vascular disease and cancer. BMC Medicine. 9 (1), 2 (2011).
  21. Hasstedt, S. J., et al. Cell adhesion molecule 1: a novel risk factor for venous thrombosis. Blood, The Journal of the American Society of Hematology. 114 (14), 3084-3091 (2009).
  22. Milbauer, L. C., et al. Blood outgrowth endothelial cell migration and trapping in vivo: a window into gene therapy. Translational Research. 153 (4), 179-189 (2009).
  23. Matsui, H., et al. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells. 25 (10), 2660-2669 (2007).
  24. De Meyer, S. F., et al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood. 107 (12), 4728-4736 (2006).
  25. Bodempudi, V., et al. Blood outgrowth endothelial cell-based systemic delivery of antiangiogenic gene therapy for solid tumors. Cancer Gene Therapy. 17 (12), 855-863 (2010).
  26. Dudek, A. Z., et al. Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. British Journal of Cancer. 97 (4), 513-522 (2007).
  27. Moubarik, C., et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Reviews and Reports. 7 (1), 208-220 (2011).
  28. Pislaru Sorin, V., et al. Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation. 114 (1), 314 (2006).
  29. Satyananda, V., et al. New concepts of immune modulation in xenotransplantation. Transplantation. 96 (11), 937-945 (2013).
  30. Klymiuk, N., Aigner, B., Brem, G., Wolf, E. Genetic modification of pigs as organ donors for xenotransplantation. Molecular Reproduction and Development. 77 (3), 209-221 (2010).
  31. Ryczek, N., Hryhorowicz, M., Zeyland, J., Lipiński, D., Słomski, R. CRISPR/Cas technology in pig-to-human xenotransplantation research. International Journal of Molecular Sciences. 22 (6), 3196 (2021).
  32. Cooper, D. K., Koren, E., Oriol, R. Genetically engineered pigs. Lancet. 342 (8872), 682-683 (1993).
  33. Cozzi, E., White, D. J. G. The generation of transgenic pigs as potential organ donors for humans. Nature Medicine. 1 (9), 964-966 (1995).
  34. Phelps, C. J., et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 299 (5605), 411-414 (2003).
check_url/pt/63285?article_type=t

Play Video

Citar este artigo
Shradhanjali, A., Uthamaraj, S., Dragomir-Daescu, D., Gulati, R., Sandhu, G. S., Tefft, B. J. Characterization of Blood Outgrowth Endothelial Cells (BOEC) from Porcine Peripheral Blood. J. Vis. Exp. (179), e63285, doi:10.3791/63285 (2022).

View Video