Summary

山羊窒息关节髌下脂肪垫间充质干细胞的分离、扩增和分化

Published: August 02, 2022
doi:

Summary

髌下脂肪垫间充质干细胞(IFP-MSCs)可以很容易地从膝关节的髌下脂肪垫中分离出来。它们 在体外增殖良好,形成CFU-F集落,并分化为成脂、软骨和成骨谱系。本文提供了从山羊扼杀关节分离、扩增和分化IFP-MSCs的方法。

Abstract

存在于膝关节中的IFP是MSC的有希望的来源。IFP是一种易于接近的组织,因为它在关节镜手术和膝关节置换手术中被常规切除和丢弃。此外,其移除与最低供体部位发病率相关。最近的研究表明,IFP-MSCs在 体外 扩增过程中不会失去其增殖能力,并且具有与年龄无关的成骨分化潜力。与骨髓来源的MSC(BMSC)和脂肪来源的干细胞(ADSC)相比,IFP-MSCs具有优越的软骨分化潜力。虽然这些细胞很容易从老年和患病患者中获得,但它们的有效性是有限的。因此,使用来自健康供体的IFP-MSCs对于确定其在生物医学应用中的功效非常重要。由于获得健康的人类供体具有挑战性,动物模型可能是实现基本理解的更好选择。狗、马、绵羊和山羊等大型动物在转化研究中起着至关重要的作用。其中,山羊可能是首选模型,因为山羊的窒息关节与人类膝关节的解剖结构最接近。此外,山羊IFP可以满足组织再生应用所需的更高MSC数。此外,低成本、可用性和符合动物研究的 3R 原则使其成为一个有吸引力的模型。本研究展示了一种简单的方案,用于从山羊的扼杀关节和 体外 培养条件下分离IFP-MSCs,以实现其扩增和分化。从山羊中无菌分离的IFP被洗涤,切碎并酶消化。过滤和离心后,将收集的细胞培养。这些细胞是贴壁的,具有MSCs样形态,并显示出显着的克隆生成能力。此外,它们分化为成脂肪、软骨和成骨谱系,证明了它们的多能性。总之,该研究证明了间充质干细胞的分离和扩增,显示出在组织工程和再生医学应用中的潜力。

Introduction

间充质干细胞(MSCs)是再生医学中基于细胞的疗法的有吸引力的候选者12。它们可以从各种组织来源中收获,例如骨髓、脐带、胎盘、牙髓和皮下脂肪组织3.然而,由于成人干细胞的可用性有限,并且它们的分离程序通常是侵入性的(导致供体部位的发病率),因此希望有一种替代的干细胞来源来规避这些挑战。

膝关节是各种细胞类型的储存库,如髌下脂肪垫衍生的MSC,滑膜来源的MSC,滑液来源的MSC,韧带成纤维细胞,关节软骨细胞等456这些细胞有可能在基于肌肉骨骼组织工程的研究中得到广泛探索。因此,膝关节可能是多种类型间充质干细胞的可能和可靠来源。 位于膝关节的脂肪库,称为髌下脂肪垫(IFP)或霍法脂肪垫,是MSC储存库的有前途的替代选择。IFP是一种相对容易获得和临床上可获得的MSCs来源,因为它在膝关节镜检查或开放膝关节手术中被常规切除并作为手术废物丢弃。去除IFP与最低供体部位发病率相关,这也使其成为一种有吸引力的组织来源。虽然具有相似的表型特征,但与骨髓来源的间充质干细胞(BM-MSCs)6相比,IFP(IFP-MSCs)的MSCs具有增强的克隆生成潜力,与皮下脂肪来源干细胞(ADSC)相比,具有更好的增殖能力7。有趣的是,与滑液衍生的MSC(SF-MSCs)相比,IFP-MSCs在晚期传代时不会失去其增殖能力,在晚期传代时也不会增加倍增时间。这表明,在细胞扩增过程中,IFP-MSCs可以实现足够多的细胞用于体外组织工程应用,而不会影响其增殖速率8。最近的研究还表明,与骨髓来源的MSC(BMSC)和脂肪来源的MSC(ADSC)相比,IFP-MSCs具有优越的软骨分化潜力,这可能是因为它们在解剖学上接近关节软骨,表明它们适用于软骨组织工程67910此外,它们还具有与年龄无关的成骨分化潜力11。关节内注射IFP-MSC已被证明可以减轻骨关节炎(OA)患者的疼痛并改善膝关节功能1213。此外,还报道了在病理条件下存在炎性细胞因子的情况下IFP-MSCs的强免疫抑制反应和改善的免疫调节特性6

IFP-MSCs是MSCs的一个有前途的替代来源;然而,它们在组织工程和再生医学中的治疗益处相对较少被探索。现有的IFP-MSCs研究主要利用了来自人类供体的细胞。其中,最近的一些研究调查了来自健康人类供体(非关节炎患者,年龄在17-60岁)的IFP-MSCs6,14,而大多数研究使用了来自接受全膝关节置换手术的老年患者(患病患者年龄70-80岁)的IFP-MSC。由于已知年龄和疾病都会改变干细胞的正常功能(数量减少和功能潜力丧失),这可能导致基于MSC的研究结果不一致715,1617。除此之外,来自病理生理状况(例如关节炎和肥胖症)患者的IFP-MSC的使用也给体理解健康细胞的基本特征带来了困难,从而成为基于MSCs的疗法开发的限制因素。为了克服这些问题,使用来自健康供体的IFP-MSC至关重要。由于获得健康的人类供体具有挑战性,动物模型可能是更好的选择。在这方面,有一些研究已经从小鼠分离出IFP18。然而,由于正常小鼠脂肪垫的尺寸很小,来自多种动物的脂肪组织已经结合以获得足够的组织来执行复杂的实验程序19。因此,需要一个大型动物模型,它可以满足对更多细胞的要求,同时符合动物研究中的3R原则(精制,替换和减少)20。大型动物的使用在转化研究中具有重要意义。具体来说,在肌肉骨骼组织工程中,已经研究了一系列大型动物,如狗,猪,绵羊,山羊和马21。山羊(Capra aegagrus hircus)是大型动物的绝佳选择,因为它的窒息关节与人类膝关节的解剖结构最接近222324。山羊的软骨下骨小梁结构和软骨下骨厚度与人类相似,据报道软骨与骨骼的比例也接近人类21。此外,山羊在世界各地被广泛驯化,使它们在骨骼成熟时很容易获得。此外,低维护成本和易于操作使它们成为有吸引力的研究动物模型22

在本研究中,展示了一种简单的方案,用于从山 羊(山 羊)的扼杀关节中分离IFP-MSCs,以及用于其扩增和分化的 体外 培养条件。分离的细胞是贴壁的,具有MSC样形态,形成CFU-F(集落形成单位成纤维细胞)集落,并具有脂肪,软骨和成骨分化潜力。因此,IFP-MSCs显示出作为生物医学应用MSCs替代来源的潜力。

Protocol

该协议基于从山羊中分离IFP-MSC。山羊IFP和血液是从当地的屠宰场收集的。由于此类组织收集不属于机构动物伦理委员会的职权范围,因此不需要伦理批准。 1. IFP-MSCs与山羊膝关节股骨关节的分离 收集山羊股骨关节(样本),包括后肢的股骨和胫骨区域各~15厘米。立即将样品放入无菌样品收集盒中,并将其储存在4°C,以便运输到实验室进行进一步处理。在…

Representative Results

从山羊股骨关节中分离IFP-MSCs的将IFP-MSCs与山羊的窒息关节分离所涉及的步骤如图 1所示。去除髌骨内非关节表面的脂肪垫,切碎并酶消化。成功分离IFP-MSCs并在 体外 培养(图2A)。 IFP-MSCs的扩增和克隆生成能力分离的细胞在扩增培养基中体 外 培养。细胞在接种后12小时内开始粘附在组?…

Discussion

在本协议中,提供了一种简单、可靠且可重现的从山羊IFP中分离MSCs的方法。使用这种方法分离的细胞已成功用于我们以前的体外组织再生研究。观察到分离的细胞是增殖的,对各种生长因子有反应,并且在接种在静电纺丝纤维和支架上时保持其生物活性2526。此外,观察到可以获得大量高质量的MSCs并与可注射水凝胶中的软骨细胞共培养,以在<e…

Declarações

The authors have nothing to disclose.

Acknowledgements

SH感谢IIT Kanpur研究所博士后奖学金和DST(SEED部门)的SYST资助(SP / YO / 618 / 2018)的支持。AM承认印度理工学院坎普尔分校(IIT-Kanpur)的研究所奖学金。DSK感谢印度Gireesh Jankinath讲座教授和生物技术系的资助(BT / PR22445 / MED/32 / 571 / 2016)。AM,SH和DSK感谢IIT-Kanpur的Mehta家庭医学工程中心的慷慨支持。

Materials

β-glycerophosphate Sigma-Aldrich G9422-10G 10 mM
0.25% Trypsin- 0.02% EDTA Hi-Media TCL049
15-mL centrifuge tube Corning
2-Phospho-L-ascorbic acid trisodium salt Sigma 49752-10G 50 µg/mL
2-Propanol Sigma-Aldrich I9516
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) HiMedia TCL021-50ml 10 mM
50-mL centrifuge tube Corning
Alcian Blue Hi-Media RM471 For sufated gycosaminoglycans staining
Alizarin Red S S D Fine-Chem Limited 26048-25G For calcium deposition
Amphotericin B HiMedia A011 2.5 µg/mL
Basic fibroblast growth factor (bFGF) Sino Biologicals 10014-HNAE 5 ng/mL
BCIP/NBT ALP Substrate Sigma B5655-5TAB For ALP staining
Biological safety cabinet
BSA HiMedia MB-083 Long name: Bovine Serum Albumin (1.25 mg/mL )
Cell strainer HiMedia TCP-182 70 µm
Centrifuge REMI
Ciprofloxacin RANBAXY LAB. Limited B17407T1 2.5 µg/mL
Crystal Violet S D Fine-Chem Limited 42555
D(+)-glucose Merck 1.94925.0521 25 mM
Dexamethasone Sigma-Aldrich D2915 1 µM
DMEM LG SIGMA D5523 Long name: Dulbecco’s Modified Eagle’s Media Low Glucose
Ethanol Merck 100983
FBS Gibco 10270 Long name: Fetal Bovine Serum
Formaldehyde solution 37%-41% Merck 61780805001730
Indomethacin Sigma-Aldrich I7378 100 µM
Insulin Sigma-Aldrich I9278 10 µg/mL
Inverted microscope Nikon Eclipse TS 100
ITS + 1 Sigma-Aldrich I2521-5mL Long name: insulin, transferrin, sodium selenite + linoleic-BSA
L-Proline HiMedia TO-109-25G 1 mM
Magnesium chloride Merck 61751605001730 For lysis buffer
Methanol Meck 1.07018.2521
Micropipettes and sterile tips (20 µL, 200 µL, 1000 µL) Thermoscientific
MUSE Cell analyser Merck Millipore For cell counting
OCT compound Tissue-Tek 4583 Long name: Optimal Cutting Temperature
Oil Red O dye S D Fine-Chem Limited 54304 For lipid vacuole staining
Penicillin-Streptomycin HiMedia A007 100 U/mL
Petri dishes (150 mm and 90 mm) NEST
Safranin O S D Fine-Chem Limited 50240 For sufated gycosaminoglycans staining
Sodium citrate Sigma-Aldrich C3434 3.4 % (w/v)
Sterile scissors, forceps and scalpels For isolation of IFP-MSC
Sucrose Merck 1.94953.0521 35 % (w/v)
TGF-β1 Sino Biologicals Long name: Transforming growth factor- β1 (10 ng/mL)
Tissue culture incubator 37 °C, 5% CO2 Thermoscientific
Tris buffer Merck 61771405001730 For lysis buffer
Triton X100 S D Fine-Chem Limited 40632 For lysis buffer
Type II collagenase Gibco 17101015 1.5 mg/mL
Vitamin D3 Sigma C9756-1G 10 nM
Well plates (6 -WP and 24-WP) NEST

Referências

  1. Han, Y., et al. Mesenchymal stem cells for regenerative medicine. Cells. 8 (8), (2019).
  2. Pittenger, M. F., et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative Medicine. 4 (1), 22 (2019).
  3. Guo, Y., Yu, Y., Hu, S., Chen, Y., Shen, Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death & Disease. 11 (5), 349 (2020).
  4. Ge, Z., Goh, J. C. H., Lee, E. H. Selection of cell source for ligament tissue engineering. Cell Transplantation. 14 (8), 573-583 (2005).
  5. Harvanová, D., Tóthová, T., Sarissky, M., Amrichová, J., Rosocha, J. Isolation and characterization of synovial mesenchymal stem cells. Folia Biologica. 57 (3), 119-124 (2011).
  6. Kouroupis, D., et al. Infrapatellar fat pad-derived MSC response to inflammation and fibrosis induces an immunomodulatory phenotype involving CD10-mediated Substance P degradation. Scientific Reports. 9 (1), 10864 (2019).
  7. Lopa, S., et al. Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment. European Cells & Materials. 27, 298-311 (2014).
  8. Garcia, J., et al. Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: The influence of tissue source and inflammatory stimulus. Scientific Reports. 6 (1), 24295 (2016).
  9. Tangchitphisut, P., et al. Infrapatellar fat pad: an alternative source of adipose-derived mesenchymal stem cells. Arthritis. 2016, 4019873 (2016).
  10. Ding, D. -. C., et al. Human infrapatellar fat pad-derived stromal cells have more potent differentiation capacity than other mesenchymal cells and can be enhanced by hyaluronan. Cell Transplantation. 24 (7), 1221-1232 (2015).
  11. Khan, W., Adesida, A., Tew, S., Andrew, J., Hardingham, T. The epitope characterisation and the osteogenic differentiation potential of human fat pad-derived stem cells is maintained with ageing in later life. Injury. 40 (2), 150-157 (2009).
  12. Koh, Y. G., et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 29 (4), 748-755 (2013).
  13. Koh, Y. G., Choi, Y. J. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 19 (6), 902-907 (2012).
  14. Kouroupis, D., Willman, M. A., Best, T. M., Kaplan, L. D., Correa, D. Infrapatellar fat pad-derived mesenchymal stem cell-based spheroids enhance their therapeutic efficacy to reverse synovitis and fat pad fibrosis. Stem Cell Research & Therapy. 12 (1), 44 (2021).
  15. Stocco, E., et al. Infrapatellar fat pad stem cells responsiveness to microenvironment in osteoarthritis: from morphology to function. Frontiers in Cell and Developmental Biology. 7, 323 (2019).
  16. Hindle, P., Khan, N., Biant, L., Péault, B. The infrapatellar fat pad as a source of perivascular stem cells with increased chondrogenic potential for regenerative medicine. Stem Cells Translational Medicine. 6 (1), 77-87 (2017).
  17. Stolzing, A., Jones, E., McGonagle, D., Scutt, A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development. 129 (3), 163-173 (2008).
  18. Wu, C. L., Diekman, B. O., Jain, D., Guilak, F. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. International Journal of Obesity (2005). 37 (8), 1079-1087 (2013).
  19. Barboza, E., et al. Profibrotic infrapatellar fat pad remodeling without M1 macrophage polarization precedes knee osteoarthritis in mice with diet-induced obesity. Arthritis & Rheumatology. 69 (6), 1221-1232 (2017).
  20. Allen, M. J., Hankenson, K. D., Goodrich, L., Boivin, G. P., von Rechenberg, B. Ethical use of animal models in musculoskeletal research. Journal of Orthopaedic Research. 35 (4), 740-751 (2017).
  21. Moran, C. J., et al. The benefits and limitations of animal models for translational research in cartilage repair. Journal of Experimental Orthopaedics. 3 (1), (2016).
  22. Kuyinu, E. L., Narayanan, G., Nair, L. S., Laurencin, C. T. Animal models of osteoarthritis: classification, update, and measurement of outcomes. Journal of Orthopaedic Surgery and Research. 11 (1), 19 (2016).
  23. Chu, C. R., Szczodry, M., Bruno, S. Animal models for cartilage regeneration and repair. Tissue Engineering Part B: Reviews. 16 (1), 105-115 (2010).
  24. Proffen, B. L., McElfresh, M., Fleming, B. C., Murray, M. M. A comparative anatomical study of the human knee and six animal species. The Knee. 19 (4), 493-499 (2012).
  25. Bhutada, S. S., Sriram, M., Katti, D. S. Sulfated carboxymethylcellulose conjugated electrospun fibers as a growth factor presenting system for tissue engineering. Carbohydrate Polymers. 268, 118256 (2021).
  26. Waghmare, N. A., Arora, A., Bhattacharjee, A., Katti, D. S. Sulfated polysaccharide mediated TGF-β1 presentation in pre-formed injectable scaffolds for cartilage tissue engineering. Carbohydrate Polymers. 193, 62-72 (2018).
  27. Arora, A., Mahajan, A., Katti, D. S. TGF-β1 presenting enzymatically cross-linked injectable hydrogels for improved chondrogenesis. Colloids & Surfaces B: Biointerfaces. 159, 838-848 (2017).
  28. Arora, A., Sriram, M., Kothari, A., Katti, D. S. Co-culture of infrapatellar fat pad-derived mesenchymal stromal cells and articular chondrocytes in plasma clot for cartilage tissue engineering. Cytotherapy. 19 (7), 881-894 (2017).
  29. Mahajan, A., Singh, A., Datta, D., Katti, D. S. Bioinspired injectable hydrogels dynamically stiffen and contract to promote mechanosensing-mediated chondrogenic commitment of stem cells. ACS Applied Materials & Interfaces. 14 (6), 7531-7550 (2022).
  30. Nakano, T., Wang, Y. W., Ozimek, L., Sim, J. S. Chemical composition of the infrapatellar fat pad of swine. Journal of Anatomy. 204 (4), 301-306 (2004).
  31. Sun, Y., Chen, S., Pei, M. Comparative advantages of infrapatellar fat pad: an emerging stem cell source for regenerative medicine. Rheumatology. 57 (12), 2072-2086 (2018).
  32. Han, W., et al. Infrapatellar fat pad in the knee: is local fat good or bad for knee osteoarthritis. Arthritis Research & Therapy. 16 (4), 1-8 (2014).
  33. Bae, S. H., et al. L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor. Growth Factors. 33 (2), 71-78 (2015).
  34. Priya, N., Sarcar, S., Majumdar, A. S., SundarRaj, S. Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. Journal of Tissue Engineering and Regenerative Medicine. 8 (9), 706-716 (2014).
  35. Tsuji, K., et al. Effects of different cell-detaching methods on the viability and cell surface antigen expression of synovial mesenchymal stem cells. Cell Transplantation. 26 (6), 1089-1102 (2017).
  36. Jing, W., et al. Explant culture: an efficient method to isolate adipose-derived stromal cells for tissue engineering. Artificial Organs. 35 (2), 105-112 (2011).
  37. Sherman, L. S., Condé-Green, A., Naaldijk, Y., Lee, E. S., Rameshwar, P. An enzyme-free method for isolation and expansion of human adipose-derived mesenchymal stem cells. Journal of Visualized Experiments. (154), e59419 (2019).
  38. Muttigi, M. S., et al. Matrilin-3 codelivery with adipose-derived mesenchymal stem cells promotes articular cartilage regeneration in a rat osteochondral defect model. Journal of Tissue Engineering and Regenerative Medicine. 12 (3), 667-675 (2018).
  39. Toghraie, F., et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. The Knee. 18 (2), 71-75 (2011).
  40. Chen, H. -. H., et al. Infrapatellar fat pad-derived mesenchymal stromal cell product for treatment of knee osteoarthritis: a first-in-human study with evaluation of the potency marker. Cytotherapy. 24 (1), 72-85 (2022).
  41. Kouroupis, D., Bowles, A. C., Best, T. M., Kaplan, L. D., Correa, D. CD10/Neprilysin enrichment in infrapatellar fat pad-derived mesenchymal stem cells under regulatory-compliant conditions: implications for efficient synovitis and fat pad fibrosis reversal. The American Journal of Sports Medicine. 48 (8), 2013 (2020).
check_url/pt/63617?article_type=t

Play Video

Citar este artigo
Mahajan, A., Hazra, S., Arora, A., Katti, D. S. Isolation, Expansion, and Differentiation of Mesenchymal Stem Cells from the Infrapatellar Fat Pad of the Goat Stifle Joint. J. Vis. Exp. (186), e63617, doi:10.3791/63617 (2022).

View Video