Summary

光诱导 位透射电子显微镜观察液-软物质相互作用

Published: July 26, 2022
doi:

Summary

本协议描述了使用光照明系统进行透射电子显微镜(TEM)修饰,制造液体细胞以及细菌细胞和光敏剂之间光诱导相互作用的 原位 TEM观察。还讨论了样品制备方法、电子束损伤和成像。

Abstract

当前协议描述了用于 原位 光诱导观察的透射电子显微镜(TEM)设置的修改。将玻璃光纤插入物镜极片上方的电子柱中,并使用可调节光源激光器来制造该装置。使用外部测量系统校准照明器后,它允许人们根据观察过程的需要调整照明强度。该照明系统用于对抗菌光动力治疗现象进行成像,这是目前深入研究的主题。通过在碳、石墨烯或氮化硅衬底上点样细菌悬浮液,印迹过量溶液,点样光敏剂溶液,再次吸干过量液体,然后用第二种底物或石墨烯膜组装液池来制备样品。成像实验本身的过程包括使用低放大倍率和最小剂量的电子选择合适的观察地点,然后周期性激活光源,以指定的间隔以最少的电子量捕获后续图像。由于观察到的现象的复杂性,需要仔细记录每次曝光的电子剂量以及使用的照明时间和强度,因为同时该过程既是光驱动的,也是电子驱动的。在进行实际实验后,必须进行额外的控制观察,其中使用相同剂量的电子但没有额外的光影响,并且较小剂量的电子用于更高剂量的光。这使得在生命和材料科学领域将光诱导的微观结构效应与电子引起的微结构效应区分开来成为可能。

Introduction

高分辨率的光诱导现象在许多领域都很有趣,例如纳米工程123,催化45和生物光子学6可以在文献中找到一些允许这种实验的原始设计,包括样品架14789和连接到显微镜1011的光纤的修改。

光照明、液体环境和透射电子显微镜(TEM)的结合为光诱导过程的详细动态研究提供了很好的机会。然而,显微镜内部的高真空条件对许多液体相当不利,尤其是水溶液。液体封装可以保护其免受环境的影响,可以使用一些主要基于石墨烯12,氮化硅13或碳14 基底的技术来实现。除了材料科学研究2外,所谓的液体细胞还提供了对生物标本在其天然条件附近进行非常规显微镜观察的可能性15。这样的观察要求非常高,特别是对于细菌细胞等活微生物。电子束作为电离辐射对水合标本造成不可逆的损伤,因此必须指定电子剂量16。这对于最大程度地减少不利影响、控制损坏和避免混淆伪影是必要的。允许观察活细胞的最佳最大电子剂量仍然是一个有问题的话题16,但30 e / nm 2 的剂量似乎是阈值,至少对于细菌17

此类显微镜研究感兴趣的一些主题是抗菌光动力治疗(APDT)期间的过程18。简而言之,治疗进行如下。细菌细胞被称为光敏剂的光敏液体包围。当以特定波长进行光照明时,细胞毒性活性氧(ROS)是由激发的光敏剂分子的能量或电荷转移到溶液中天然存在的氧气产生的。暴露于ROS的病原体以非常高的效率快速灭活,没有副作用19。对于不同的微生物,对治疗的反应各不相同 – 例如,对于革兰氏阳性和革兰氏阴性细菌20,同一光敏剂的影响可能完全不同。一般来说,已经确定ROS的主要目标是细胞的外部结构,其中损伤导致细胞膜的功能紊乱,从而导致细菌死亡2122。然而,对核酸和蛋白质扫描的损伤也被认为是失活的原因18,因此在此过程中哪些细胞结构是主要靶标仍然未知19。更深入地了解破坏性过程可能有助于改善这种确定性疗法。与APDT研究中使用的光学显微镜方法23相比,TEM技术为以更高的分辨率和放大倍率观察APDT机制提供了更多的可能性24。TEM已经成功地用于正在进行的治疗期间的细胞观察,这使我们能够研究革兰氏阳性细菌损伤并详细描述细胞壁内发生的变化625

目前的协议为使用TEM对光诱导细菌灭活的高分辨率成像提供了一种合适的实验设置,这需要适当的光照明系统,用液体封装细胞以及严格的电子剂量控制。用于观察的细菌是 金黄色葡萄球菌,并使用亚甲蓝溶液作为光敏剂。特殊的光照明设置包括使用光光纤直接连接到显微镜柱的可调谐半导体激光器。由于光纤几乎平行于显微镜轴线,因此这种设计在整个样品中提供了均匀的照射。然后,激光产生的高强度单色光可用于研究各种光化学效应。实验中使用的光的波长等于660nm,因为在可见光区域,亚甲蓝在613nm和664nm处具有吸收峰26。液体封装方案基于碳基质,这使得该过程快速而简单。最后,提出了一种对液体中细胞进行低 剂量原位 TEM观察的方法。讨论了样品制备的难点、电子剂量对敏感样品的影响以及合理的图像解释。

Protocol

1.透射电子显微镜改性 通过将光纤(见 材料表)连接到物镜顶部的显微镜柱来修改透射电子显微镜。物镜和聚光镜之间留出几厘米的空间,外加一个用于存放配件的空闲插槽。注意:也可以使用专用样品架4 或反向配置1 的阴极发光观察支架。 使用粗真空泵检查系统是否有泄漏。如果系统没有显示真空泄漏,请在高真…

Representative Results

该实验装置旨在以高分辨率观察液体中发生的光诱导过程。对图像的竞争分析使我们能够区分电子束造成的损伤与与光化学反应相关的变化。当电子均匀地穿透它时,电子束对敏感样品(在这种情况下,用液体包裹的细胞)的影响在整个照射区域都是可见的。当然,效果取决于电子剂量,因此对于更聚焦的光束,可以更快地观察到样品形态的更显着变化。与这种严重的损伤相比,光动力失活的实?…

Discussion

照明器的安装和调试需要基本的维修知识,并且可能会损坏显微镜。将光线引入显微镜的最简单方法是从物镜顶部连接光纤,那里通常有空间容纳TEM偏转线圈和额外的探测器。较旧的顶部入口设备也可以获得更多可用空间,其中相同的位置容纳样品真空锁和样品安装机构。这种配置在先前的报告25中被广泛描述,该报告25包含示例性照明器设计。如果显微镜内部不允许将光纤安装…

Declarações

The authors have nothing to disclose.

Acknowledgements

该研究得到了微型基金(2019/03/X/NZ3/02100,波兰国家科学中心)的支持。

Materials

Carbon film on 200 mesh copper grid Agar Scientific AGS160 The standard TEM grids for observations and liquid cell preparation
Crossover Tweezers Dumont N5 The tweezers are neecesarry for liquid cell preparation
Photodiode Power Sensor ThorLabs S130C The sensor used for light intensity measurement
Polyimide-Coated Multimode Fiber Thorlabs FG400UEP Must be built into the microscope using the on-site built adapter, according to the 10.1016/j.ultramic.2021.113388
Transmission Electron Microscope Hitachi H-800 Can be replaced with any side-entry microscope, available for modification
Tuneable Diode Laser CNI MRL-III-660D The light wavelength must be chosen basing on photosensitizer's absorption spectrum

Referências

  1. Vadai, M., Angell, D. K., Hayee, F., Sytwu, K., Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nature Communications. 9 (1), 1-8 (2018).
  2. Weng, B., et al. Visualizing light-induced dynamic structural transformations of Au clusters-based photocatalyst via in situ TEM. Nano Research. 12 (1), 1-5 (2021).
  3. Cao, K., et al. In situ TEM investigation on ultrafast reversible lithiation and delithiation cycling of Sn@C yolk-shell nanoparticles as anodes for lithium ion batteries. Nano Energy. 40, 187-194 (2017).
  4. Cavalca, F., et al. In situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology. 23 (7), 075705 (2012).
  5. Tung, C. -. W., et al. Light-induced activation of adaptive junction for efficient solar-driven oxygen evolution: In situ unraveling the interfacial metal-silicon junction. Advanced Energy Materials. 9 (31), 1901308 (2019).
  6. Żak, A. M., Kaczmarczyk, O., Piksa, M., Matczyszyn, K. Light-induced in situ transmission electron microscopy: Novel approach for antimicrobial photodynamic therapy imaging. Photodiagnosis and Photodynamic Therapy. 35, 102463 (2021).
  7. Shindo, D., et al. Development of a multifunctional TEM specimen holder equipped with a piezodriving probe and a laser irradiation port. Journal of Electron Microscopy. 58 (4), 245-249 (2009).
  8. Zhang, C., et al. Photosensing performance of branched CdS/ZnO heterostructures as revealed by in situ TEM and photodetector tests. Nanoscale. 6 (14), 8084-8090 (2014).
  9. Zhang, C., et al. Statistically analyzed photoresponse of elastically bent CdS nanowires probed by light-compatible in situ high-resolution TEM. Nano Letters. 16 (10), 6008-6013 (2016).
  10. Yoshida, K., Yamasaki, J., Tanaka, N. In situ high-resolution transmission electron microscopy observation of photodecomposition process of poly-hydrocarbons on catalytic TiO2 films. Applied Physics Letters. 84 (14), 2542-2544 (2004).
  11. Yoshida, K., Nozaki, T., Hirayama, T., Tanaka, N. In situ high-resolution transmission electron microscopy of photocatalytic reactions by excited electrons in ionic liquid. Journal of Electron Microscopy. 56 (5), 177-180 (2007).
  12. Textor, M., De Jonge, N. Strategies for preparing graphene liquid cells for transmission electron microscopy. Nano Letters. 18 (6), 3313-3321 (2018).
  13. Ring, E. A., De Jonge, N. Microfluidic system for transmission electron microscopy. Microscopy and Microanalysis. 16 (5), 622-629 (2010).
  14. Inayoshi, Y., Minoda, H. A carbon sandwich environmental cell for wet specimens. Journal of Electron Microscopy. 62 (6), 623-628 (2013).
  15. Koo, K., Dae, K. S., Hahn, Y. K., Yuk, J. M. Live cell electron microscopy using graphene veils. Nano Letters. 20 (6), 4708-4713 (2020).
  16. De Jonge, N., Peckys, D. B. Live cell electron microscopy is probably impossible. ACS Nano. 10 (10), 9061-9063 (2016).
  17. Kennedy, E., Nelson, E. M., Damiano, J., Timp, G. Gene expression in electron-beam-irradiated bacteria in reply to "live cell electron microscopy is probably impossible.&#34. ACS Nano. 11 (1), 3-7 (2017).
  18. Alves, E., et al. An insight on bacterial cellular targets of photodynamic inactivation. Future Medicinal Chemistry. 6 (2), 141-164 (2014).
  19. Cieplik, F., et al. Antimicrobial photodynamic therapy-What we know and what we don’t. Critical Reviews in Microbiology. 44 (5), 571-589 (2018).
  20. Huang, L., et al. Type I and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on gram-negative and gram-positive bacteria. Lasers in Surgery and Medicine. 44 (6), 490-499 (2012).
  21. Caminos, D. A., Spesia, M. B., Pons, P., Durantini, E. N. Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin. Photochemical and Photobiological Sciences. 7 (9), 1071-1078 (2008).
  22. Chu, J. C. H., Chin, M. L., Wong, C. T. T., Hui, M., Lo, P. C., Ng, D. K. P. One-pot synthesis of a cyclic antimicrobial peptide-conjugated phthalocyanine for synergistic chemo-photodynamic killing of multidrug-resistant bacteria. Advanced Therapeutics. 4 (3), 1-10 (2021).
  23. Rogers, S., Honma, K., Mang, T. S. Confocal fluorescence imaging to evaluate the effect of antimicrobial photodynamic therapy depth on P. gingivalis and T. denticola biofilms. Photodiagnosis and Photodynamic Therapy. 23, 18-24 (2018).
  24. Maldonado-Carmona, N., et al. Porphyrin-loaded lignin nanoparticles against bacteria: A photodynamic antimicrobial chemotherapy application. Frontiers in Microbiology. 11, 606185 (2020).
  25. Żak, A. M., Kaczmarczyk, O., Piksa, M., Grzęda, J., Matczyszyn, K. Fiber-optic sample illuminator design for the observation of light induced phenomena with transmission electron microscopy in situ: Antimicrobial photodynamic therapy. Ultramicroscopy. 230, 113388 (2021).
  26. Dinh, V. P., et al. Insight into the adsorption mechanisms of methylene blue and chromium(III) from aqueous solution onto pomelo fruit peel. RSC Advances. 9 (44), 25847-25860 (2019).
  27. Żak, A. Guide to controlling the electron dose to improve low-dose imaging of sensitive samples. Micron. 145, 103058 (2021).
  28. Drulyte, I., et al. Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallographica Section D. 74 (6), 560-571 (2018).
  29. Scarff, C. A., Fuller, M. J. G., Thompson, R. F., Iadaza, M. G. Variations on negative stain electron microscopy methods: Tools for tackling challenging systems. Journal of Visualized Experiments. (132), (2018).
  30. Booth, D. S., Avila-Sakar, A., Cheng, Y. Visualizing proteins and macromolecular complexes by negative stain EM: From grid preparation to image acquisition. Journal of Visualized Experiments. (58), (2011).
  31. Rames, M., Yu, Y., Ren, G. Optimized negative staining: A high-throughput protocol for examining small and asymmetric protein structure by electron microscopy. Journal of Visualized Experiments. (90), e51087 (2014).
  32. Miller, B. K., Crozier, P. A. System for in situ UV-visible illumination of environmental transmission electron microscopy samples. Microscopy and Microanalysis. 19 (2), 461-469 (2013).
  33. Yuk, J. M., et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science. 336 (6077), 61-64 (2012).
  34. Schneider, N. M., et al. Electron-Water interactions and implications for liquid cell electron microscopy. Journal of Physical Chemistry C. 118 (38), 22373-22382 (2014).
check_url/pt/63742?article_type=t

Play Video

Citar este artigo
Żak, A., Kaczmarczyk, O. Light-Induced In Situ Transmission Electron Microscopy for Observation of the Liquid-Soft Matter Interaction. J. Vis. Exp. (185), e63742, doi:10.3791/63742 (2022).

View Video