Summary

在定制灌注生物反应器中获取和灌注-脱细胞猪血管化皮瓣

Published: August 01, 2022
doi:

Summary

该协议描述了通过在定制的灌注生物反应器中通过皮瓣脉管系统灌注十二烷基硫酸钠洗涤剂来手术获取和随后的血管化猪皮瓣的脱细胞。

Abstract

大量软组织缺损会导致功能缺陷,并会极大地影响患者的生活质量。虽然手术重建可以使用自体游离皮瓣移植或血管化复合同种异体移植(VCA)进行,但这种方法也有缺点。供体部位发病率和组织可用性等问题限制了自体游离皮瓣移植,而免疫抑制是 VCA 的重要限制。使用去细胞化/再细胞化方法的重建手术中的工程组织代表了一种可能的解决方案。使用去除天然细胞物质同时保留底层细胞外基质(ECM)微结构的方法生成去细胞化组织。然后,这些无细胞支架随后可以用受体特异性细胞重新细胞化。

该协议详细介绍了用于在猪模型中实现无细胞支架的获取和脱细胞方法。此外,它还提供了灌注生物反应器设计和设置的描述。皮瓣包括猪网膜、阔筋膜张肌和桡骨前臂。通过低浓度十二烷基硫酸钠(SDS)洗涤剂的 离体 灌注进行脱细胞,然后在定制的灌注生物反应器中进行DNase酶处理和过氧乙酸灭菌。

成功的组织脱细胞的特征是肉眼下皮瓣呈白色不透明外观。无细胞瓣显示组织学染色时没有细胞核,DNA 含量显着降低。该协议可以有效地用于生成具有保留ECM和血管微结构的脱细胞软组织支架。这种支架可用于随后的细胞再生研究,并具有在重建手术中的临床转化潜力。

Introduction

创伤性损伤和肿瘤切除可导致大而复杂的软组织缺损。这些缺陷会损害患者的生活质量,导致功能丧失,并导致永久性残疾。虽然自体组织皮瓣移植等技术已被普遍采用,但皮瓣可用性和供体部位发病率问题是主要限制123。血管化复合同种异体移植(VCA)是一种有前途的替代方案,可将复合组织(例如肌肉,皮肤,脉管系统)作为一个单元转移给受体。然而,VCA需要长期免疫抑制,这会导致药物毒性、机会性感染和恶性肿瘤456

组织工程无细胞支架是这些限制的潜在解决方案7。无细胞组织支架可以使用去细胞化方法获得,该方法从天然组织中去除细胞物质,同时保留底层细胞外基质(ECM)微结构。与在组织工程中使用合成材料相比,使用生物衍生支架提供了一种仿生ECM底物,可实现生物相容性和临床翻译的潜力8。脱细胞后,随后用受体特异性细胞对支架进行再细胞化,然后可以产生几乎没有免疫原性的功能性血管化组织91011。通过开发使用灌注脱细胞技术获得无细胞组织的有效方案,可以设计多种组织类型。反过来,基于该技术允许应用于更复杂的组织。迄今为止,已经使用简单的血管化组织(例如啮齿动物 12、猪 13 和人类模型14 的全层筋膜皮瓣)以及猪腹直肌骨骼肌15 研究了血管化软组织的灌注脱细胞化。此外,复杂的血管化组织也已灌注脱细胞,如猪和人耳1617模型和人全脸移植模型18所示。

在这里,该协议描述了使用生物衍生的ECM支架的血管化游离瓣的去细胞化。我们介绍了三个临床相关皮瓣的去细胞化:1)网膜,2)阔筋膜张量和3)桡骨前臂,所有这些都代表了重建手术中常规使用的主力皮瓣,并且以前从未在组织脱细胞背景下的动物研究中进行过检查。这些生物工程皮瓣提供了一个多功能且易于获得的平台,具有临床应用的潜力,可用于大型软组织缺损修复和重建领域。

Protocol

所有涉及动物受试者的程序均已获得大学健康网络机构动物护理和使用委员会(IACUC)的批准,并按照大学健康网络动物资源中心的协议和程序以及加拿大动物护理指南委员会执行。所有实验均使用五头约克郡猪(35-50公斤;约12周龄)。 1. 灌注生物反应器制造 有关灌注生物反应器中使用的所有组件,请参见 图1 。对于组织室的制造,请使用市售的聚…

Representative Results

这种使血管化猪瓣脱细胞的方案依赖于离子基洗涤剂SDS通过定制灌注生物反应器中的皮瓣脉管系统的灌注。在脱细胞之前,根据猪模型的主要供应血管采购和插管三个血管化皮瓣。采购后立即冲洗瓣,以保持专利,可灌注脉管系统,以便成功脱细胞。使用密封的卡扣盖容器,设计了一种定制的生物反应器,以允许在封闭环境中进行瓣灌注。使用连接到组织室的两个蠕动泵以单程方式实现生物反应?…

Discussion

拟议的方案使用低浓度SDS的灌注来使一系列猪源性皮瓣脱细胞。通过此程序,可以使用有利于低浓度 SDS 的方案成功脱细胞,无细胞网膜、阔筋膜张肌和桡骨前臂皮瓣。初步优化实验已确定,当使用组织学技术分析时,2天至5天之间低浓度(0.05%)的SDS能够去除网膜,阔筋膜张肌和桡骨前臂瓣的细胞物质(补充图1,补充图2,补充图3)。这种方法提供了一种简单的方法,可以在短时间?…

Declarações

The authors have nothing to disclose.

Acknowledgements

没有

Materials

0.2 µm pore Acrodisk Filter VWR CA28143-310
0.9 % Sodium Chloride Solution (Normal Saline) Baxter JF7123
20 L Polypropylene Carboy Cole-Parmer RK-62507-20
3-0 Sofsilk Nonabsorbable Surgical Tie Covidien  LS639
3-way Stopcock Cole-Parmer UZ-30600-04
Adson Forceps Fine Science Tools 11027-12
Antibiotic-Antimycotic Solution, 100X Wisent 450-115-EL
Atropine Sulphate 15 mg/30ml Rafter 8 Products 238481
BD Angiocath 20-Gauge VWR BD381134
BD Angiocath 22-Gauge VWR BD381123
BD Angiocath 24-Gauge VWR BD381112
Calcium Chloride Sigma-Aldrich C4901 DNAse Co-factor
DNase I from bovine pancreas Sigma-Aldrich DN25
DNA assay (Quant-iT PicoGreen dsDNA Assay Kit) Invitrogen P7589
DPBS, 10X Wisent 311-415-CL  without Ca++/Mg++
Halsted-Mosquito Hemostat Fine Science Tools 13008-12
Heparin, 1000 I.U./mL Leo Pharma A/S 453811
Ketamine Hydrochloride  5000 mg/50 ml Bimeda-MTC Animal Health Inc. 612316
Ismatec Pump Tygon 3-Stop Tubing Cole-Parmer RK-96450-40 Internal Diameter:  1.85 mm
Ismatec REGLO 4-Channel Pump Cole-Parmer 78001-78
Ismatec Tubing Cassettes Cole-Parmer RK-78016-98
Isoflurane 99.9%, 250 ml Pharmaceutical Partners of Canada Inc. 2231929
LB Agar Lennox Bioshop Canada LBL406.500 Sterility testing agar plates
Magnesium Sulfate Sigma-Aldrich M7506 DNAse Co-factor
Masterflex L/S 16 Tubing Cole-Parmer RK-96410-16
Midazolam 50 mg/10 ml Pharmaceutical Partners of Canada Inc. 2242905
Monopolar Cautery Pencil Valleylab E2100
Normal Buffered Formalin, 10% Sigma-Aldrich HT501128
N°11 scalpel blade Swann Morton 303
Papain from papaya latex Sigma-Aldrich P3125
Peracetic Acid Sigma-Aldrich 269336
Plastic Barbed Connector for 1/4" to 1/8" Tube ID McMaster-Carr 5117K61
Plastic Barbed Tube 90° Elbow Connectors McMaster-Carr 5117K76
Plastic Quick-Turn Tube Plugs McMaster-Carr 51525K143 Male Luer
Plastic Quick-Turn Tube Sockets McMaster-Carr 51525K293 Female Luer
Punch Biopsy Tool Integra Miltex 3332
Potassium Chloride 40 mEq/20 ml Hospira Healthcare Corporation 37869
Povidone-Iodine, 10% Rougier 833133
Serological Pipet, 2mL Fisher Science 13-678-27D
Snap Lid Airtight Containers SnapLock 142-3941-4
Sodium Dodecyl Sulfate Powder Sigma-Aldrich L4509
Surgical Metal Ligation Clips, Small Teleflex 001200
Stevens Tenotomy Scissors, 115 mm, straight B. Braun BC004R
TruWave Pressure Monitoring Set Edwards Lifesciences PX260

Referências

  1. Richardson, D., Fisher, S. E., Vaughan, D. E., Brown, J. S. Radial Forearm Flap Donor-Site Complications and Morbidity: A Prospective Study. Plastic and Reconstructive Surgery. 99 (1), 109-115 (1997).
  2. Edsander-Nord, &. #. 1. 9. 7. ;., Jurell, G., Wickman, M. Donor-site morbidity after pedicled or free TRAM flap surgery: A prospective and objective study. Plastic and Reconstructive Surgery. 102 (5), 1508-1516 (1998).
  3. Qian, Y., et al. A systematic review and meta-analysis of free-style flaps: Risk analysis of complications. Plastic and Reconstructive Surgery. Global Open. 6 (2), 1651 (2018).
  4. Issa, F. Vascularized composite allograft-specific characteristics of immune responses. Transplant International. 29 (6), 672-681 (2016).
  5. Kueckelhaus, M., et al. Vascularized composite allotransplantation: Current standards and novel approaches to prevent acute rejection and chronic allograft deterioration. Transplant International. 29 (6), 655-662 (2016).
  6. Iske, J., et al. Composite tissue allotransplantation: Opportunities and challenges. Cellular and Molecular Immunology. 16 (4), 343-349 (2019).
  7. Londono, R., Gorantla, V. S., Badylak, S. F. Emerging implications for extracellular matrix-based technologies in vascularized composite allotransplantation. Stem Cells International. 2016, 1541823 (2016).
  8. Crapo, P. M., Gilbert, T. W., Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials. 32 (12), 3233-3243 (2011).
  9. Hussey, G. S., Dziki, J. L., Badylak, S. F. Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials. 3, 159-173 (2018).
  10. Colazo, J. M., et al. Applied bioengineering in tissue reconstruction, replacement, and regeneration. Tissue Engineering. Part B Reviews. 25 (4), 259-290 (2019).
  11. Rouwkema, J., Rivron, N. C., van Blitterswijk, C. A. Vascularization in tissue engineering. Trends in Biotechnology. 26 (8), 434-441 (2008).
  12. Zhang, Q., et al. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps. Acta Biomaterialia. 35, 166-184 (2016).
  13. Jank, B. J., et al. Creation of a bioengineered skin flap scaffold with a perfusable vascular pedicle. Tissue Engineering – Part A. 23 (13-14), 696-707 (2017).
  14. Giatsidis, G., Guyette, J. P., Ott, H. C., Orgill, D. P. Development of a large-volume human-derived adipose acellular allogenic flap by perfusion decellularization. Wound Repair and Regeneration. 26 (2), 245-250 (2018).
  15. Zhang, J., et al. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials. 89, 114-126 (2016).
  16. Duisit, J., et al. Decellularization of the porcine ear generates a biocompatible, nonimmunogenic extracellular matrix platform for face subunit bioengineering. Annals of Surgery. 267 (6), 1191-1201 (2018).
  17. Duisit, J., et al. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering. Acta Biomaterialia. 73, 339-354 (2018).
  18. Duisit, J., et al. Bioengineering a human face graft: The matrix of identity. Annals of Surgery. 266 (5), 754-764 (2017).
  19. Haughey, B. H., Panje, W. R. A porcine model for multiple musculocutaneous flaps. The Laryngoscope. 99 (2), 204-212 (1989).
  20. Khachatryan, A., et al. Radial Forearm Flap. Microsurgery Manual for Medical Students and Residents: A Step-by-Step Approach. , 177-181 (2021).
  21. Hammouda, B. Temperature effect on the nanostructure of SDS micelles in water. Journal of Research of the National Institute of Standards and Technology. 118, 151-167 (2013).
  22. Qu, J., Van Hogezand, R. M., Zhao, C., Kuo, B. J., Carlsen, B. T. Decellularization of a fasciocutaneous flap for use as a perfusable scaffold. Annals of Plastic Surgery. 75 (1), 112-116 (2015).
  23. Keane, T. J., Swinehart, I. T., Badylak, S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 84, 25-34 (2015).
  24. Mendibil, U., et al. Tissue-specific decellularization methods: Rationale and strategies to achieve regenerative compounds. International Journal of Molecular Sciences. 21 (15), 5447 (2020).
  25. Lupon, E., et al. Engineering vascularized composite allografts using natural scaffolds: A systematic review. Tissue Engineering. Part B Reviews. 28 (3), 677-693 (2022).
  26. Duisit, J., Maistriaux, L., Bertheuil, N., Lellouch, A. G. Engineering vascularized composite tissues by perfusion decellularization/recellularization: Review. Current Transplantation Reports. 8, 44-56 (2021).
  27. Adil, A., Xu, M., Haykal, S. Recellularization of bioengineered scaffolds for vascular composite allotransplantation. Frontiers in Surgery. 9, 843677 (2022).
  28. Phelps, E. A., García, A. J. Engineering more than a cell: Vascularization strategies in tissue engineering. Current Opinion in Biotechnology. 21 (5), 704-709 (2010).
  29. Pozzo, V., et al. A reliable porcine fascio-cutaneous flap model for vascularized composite allografts bioengineering studies. Journal of Visualized Experiments. (181), e63557 (2022).
  30. Uygun, B. E., et al. Decellularization and recellularization of whole livers. Journal of Visualized Experiments. (48), e2394 (2011).
  31. Uzarski, J. S., et al. Epithelial cell repopulation and preparation of rodent extracellular matrix scaffolds for renal tissue development. Journal of Visualized Experiments. (102), e53271 (2015).
  32. Sullivan, D. C., et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 33 (31), 7756-7764 (2012).
  33. Choudhury, D., Yee, M., Sheng, Z. L. J., Amirul, A., Naing, M. W. Decellularization systems and devices: State-of-the-art. Acta Biomaterialia. 115, 51-59 (2020).
  34. Schilling, B. K., et al. Design and fabrication of an automatable, 3D printed perfusion device for tissue infusion and perfusion engineering. Tissue Engineering. Part A. 26 (5-6), 253-264 (2020).
check_url/pt/64068?article_type=t

Play Video

Citar este artigo
Xu, M. S., Karoubi, G., Waddell, T. K., Haykal, S. Procurement and Perfusion-Decellularization of Porcine Vascularized Flaps in a Customized Perfusion Bioreactor. J. Vis. Exp. (186), e64068, doi:10.3791/64068 (2022).

View Video