Summary

细胞运输的正电子发射断层扫描成像:一种细胞放射性标记方法

Published: October 27, 2023
doi:

Summary

这里介绍的是使用即用型放射性标记合成子[89Zr]Zr-p-异硫氰酸基苄基-去铁胺([89Zr]Zr-DBN)用正电子发射断层扫描(PET)放射性同位素89Zr(t1/2 78.4 h)对细胞进行放射性标记的方案。用 [89Zr]Zr-DBN 放射性标记细胞允许在给药后长达 7 天内对体内 PET 中施用的放射性标记细胞进行无创跟踪和成像。

Abstract

干细胞和嵌合抗原受体(CAR)T细胞疗法正在成为器官再生的有前途的疗法和各种癌症的免疫疗法。尽管在这些领域取得了重大进展,但仍需学习更多知识,以更好地了解生命系统中施用治疗细胞的药代动力学和药效学。对于使用正电子发射断层扫描 (PET) 对细胞进行非侵入性体内追踪,已经开发了一种利用 89 Zr (t1/2 78.4 h) 的新型 [89Zr]Zr-p-异硫氰酸基苄基-去铁胺 ([89Zr]Zr-DBN) 介导的细胞放射性标记方法。本方案描述了一种[89Zr]Zr-DBN介导的即用型放射性标记合成子,用于直接放射性标记各种细胞,包括间充质干细胞、谱系引导的造心干细胞、肝脏再生肝细胞、白细胞、黑色素瘤细胞和树突状细胞。所开发的方法能够在给药后长达 7 天内对细胞运输进行无创 PET 成像,而不会影响放射性标记细胞的性质或功能。此外,该协议描述了[89Zr]Zr-DBN的放射合成,[89Zr]Zr-DBN的生物相容性制剂,用于放射性标记的细胞的制备,以及最后用[89Zr]Zr-DBN对细胞进行放射性标记的逐步方法,包括成功放射性标记细胞所需的所有复杂细节。

Introduction

干细胞和嵌合抗原受体 (CAR) T 细胞疗法越来越受欢迎,并正在积极研究用于治疗各种疾病,例如心肌衰竭1,2、视网膜变性 2、黄斑变性 2、糖尿病 2心肌梗塞345 和癌症678910.在干细胞疗法的两种合理方法中,干细胞可以直接移植到疾病部位引起治疗反应,也可以引起疾病部位微环境的变化而不粘附在疾病部位以启动间接治疗反应。间接治疗反应可以通过释放修复或治疗疾病的因子来引起疾病部位微环境的变化5.这些干细胞治疗方法可以通过放射性标记干细胞的无创成像来评估。无创成像可以将疾病部位放射性标记细胞的摄取与治疗反应相关联,以破译直接与间接治疗反应。

此外,基于免疫细胞的疗法正在开发中,以使用 CAR T 细胞678910 和树突状细胞免疫疗法11,12 治疗各种癌症。从机制上讲,在CAR T细胞免疫疗法6,7,8,9,10中T细胞被设计为表达与需要治疗的肿瘤上的特定抗原结合的表位。这些工程化的CAR T细胞在给药时,通过表位-抗原相互作用与肿瘤细胞上存在的特异性抗原结合。结合后,结合的CAR T细胞发生激活,然后增殖并释放细胞因子,细胞因子向宿主的免疫系统发出信号,攻击表达特异性抗原的肿瘤。相反,在树突状细胞疗法11,12的情况下树突状细胞被设计成在其表面呈递特定的癌症抗原。这些经过工程改造的树突状细胞在给药时是淋巴结的家园,并与淋巴结中的T细胞结合。T细胞在与施用的树突状细胞上的特定癌症抗原结合后,发生激活/增殖,并启动宿主对表达该特定抗原的肿瘤的免疫反应。因此,通过对放射性标记的CAR T细胞和树突状细胞进行成像来评估给药的CAR T细胞向肿瘤部位的运输9,10以及树突状细胞归巢到淋巴结11,12以确定免疫疗法的疗效。此外,非侵入性细胞运输可以帮助更好地了解治疗潜力,阐明直接与间接治疗反应,并预测和监测干细胞和基于免疫细胞的疗法的治疗反应。

已经探索了细胞运输的不同成像方式 3,4,9,10,12包括光学成像、磁共振成像 (MRI)、单光子发射计算机断层扫描 (SPECT) 和正电子发射断层扫描 (PET)。这些技术中的每一种都有自己的优点和缺点。其中,PET因其定量性和高灵敏度而成为最有前途的方法,这对于基于成像的细胞运输中的细胞可靠定量至关重要3,4,9,10。

正电子发射放射性同位素89Zr,半衰期为78.4 h,适用于细胞标记。它允许对细胞运输进行 PET 成像超过 1 周,并且很容易由广泛使用的低能量医用回旋加速器1314151617 产生。此外,市售的对异硫氰酸基苄基去铁胺 (DFO-Bn-NCS) 螯合剂可用于合成 89 Zr 标记的即用型细胞标记合成子 [89 Zr]Zr-p-异硫氰酸基苄基去铁胺,也称为 [89Zr]Zr-DBN 18,19,20,21,22,23,2425.[89Zr]Zr-DBN 介导的细胞标记原理基于细胞膜蛋白的伯胺与 [89Zr]Zr-DBN 的异硫氰酸酯 (NCS) 部分之间的反应,以产生稳定的共价硫脲键。

[89锆]基于 Zr-DBN 的细胞标记和成像已发表,用于追踪各种不同的细胞,包括干细胞 18、23、25、树突状细胞18、造心干细胞19、蜕膜基质细胞 20、骨髓来源的巨噬细胞 20、外周血单核细胞 20、Jurkat/CAR T 细胞 21、肝细胞2224 和白细胞 25.以下方案提供了使用[89Zr]Zr-DBN制备和细胞放射性标记的分步方法,并描述了特定细胞类型的放射性标记方案中可能需要的变化。为了更清楚起见,这里介绍的细胞放射性标记方法分为四个部分。第一部分涉及通过将 89Zr 与 DFO-Bn-NCS 螯合来制备 [89Zr]Zr-DBN。第二部分描述了[89Zr]Zr-DBN的生物相容性制剂的制备,该制剂可以很容易地用于细胞放射性标记。第三部分介绍了用于放射性标记的细胞预处理所需的步骤。细胞的预处理包括用无蛋白磷酸盐缓冲盐水 (PBS) 和 HEPES 缓冲的 Hanks 平衡盐溶液 (H-HBSS) 洗涤细胞,以去除外部蛋白质,这些蛋白质可能会干扰或竞争 [89Zr]Zr-DBN 与细胞表面蛋白质上存在的伯胺的反应在放射性标记过程中。最后一部分提供了细胞实际放射性标记和质量控制分析所涉及的步骤。

Protocol

树突状细胞和黑色素瘤细胞在商业上获得18.腹腔镜肝部分切除术后从猪肝脏中分离肝细胞22,24。从骨髓抽吸物中分离干细胞18,19,26。脂肪组织来源的干细胞购自梅奥诊所罗切斯特院区的人类细胞治疗实验室23。从妙佑医疗国际罗切斯特输血医学科采?…

Representative Results

本手稿中提出的代表性结果来自先前的 [89Zr]Zr-DBN 合成和细胞放射性标记研究 18,19,22,23,24,25。简而言之,使用7.5-15μgDFO-Bn-NCS,在25-37°C下,89Zr可以在~30-60分钟内与DFO-Bn-NCS成功络合(表2)。细胞放射性标记效率在洗涤后?…

Discussion

以下是方案中需要优化以实现有效细胞放射性标记的关键步骤。在方案步骤1.2和1.3中,根据所采用的[89Zr]Zr(HPO42或[89Zr]ZrCl4的体积,必须使用适当体积(微升)的碱;1.0 M K 2CO 3 溶液必须用于中和 [89 Zr]Zr(HPO 4)2,1.0 M Na2CO 3 溶液用于中和 [89Zr]ZrCl4,以达到 7.5-8.0 的 pH 范围。在步骤2…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 NIH 5R21HL127389-02、NIH 4T32HL007111-39、NIH R01HL134664 和 DOE DE-SC0008947 资助、维也纳国际原子能机构、妙佑医疗国际核医学科放射科和明尼苏达州罗切斯特梅奥诊所再生医学中心的支持。所有数字都是使用 BioRender.com 创建的。

Materials

Acetonitrile Thermo Fisher Scientific, Inc., Waltham, MA, USA A996-4
Alpha Minimum Essential Medium Thermo Fisher Scientific, Inc., Waltham, MA, USA 12571063
Anion exchange column Macherey-Nagel, Inc., Düren, Germany 731876 Chromafix 30-PS-HCO3 SPE 45 mg cartridge
Conical centrifuge tubes (15 mL) Corning Inc., Glendale, AZ, USA 352096 Falcon 15 mL high-clarity polypropylene (PP) conical centrifuge tubes
Dendritic cells The American Type Culture Collection, Manassas, VA, USA CRL-11904
DFO-Bn-NCS Macrocyclics, Inc., Plano, TX, USA B-705 p-SCN-Bn-Deferoxamine
DMSO Sigma-Aldrich, Inc., St. Louis, MO 276855
Dose calibrator Mirion Technologies (Capintec), Inc., Florham Park, NJ, USA 5130-3234 CRC -55tR Dose Calibrator 
Dulbecco’s modified Eagle’s medium  The American Type Culture Collection, Manassas, VA, USA 30-2002
Fetal Bovine Serum (FBS) The American Type Culture Collection, Manassas, VA, USA 30-2020
Hanks Balanced Salt solution (HBSS) Thermo Fisher Scientific, Inc., Waltham, MA, USA 14025092 For preparation of H-HBSS
Hydrochloric Acid (trace metal basis grade) Thermo Fisher Scientific, Inc., Waltham, MA, USA A508P212
Melanoma cells The American Type Culture Collection, Manassas, VA, USA CRL-6475
Methanol Sigma-Aldrich, Inc., St. Louis, MO 34860
Microcentrifuge tube Eppendorf, Hamburg, Germany 30108442 Protein LoBind microcentrifuge tube
Murine GM-CSF R&D Systems, Inc., Minneapolis, MN USA 415-ML-010
Penicillin/Streptomycin Thermo Fisher Scientific, Inc., Waltham, MA, USA 15140-122
Phosphate Buffered Saline without Ca2+ and Mg2+ Thermo Fisher Scientific, Inc., Waltham, MA, USA 10010023 For washing cells
Saline Covidien LLC, Mansfield, MA, USA 1020 0.9% Sterile Saline Solution
Shaker  Eppendorf, Hamburg, Germany T1317 Thermomixer
Silica gel-rad-TLC paper sheet  Agilent Technologies Inc., Santa Clara, CA, USA SGI0001 iTLC-SG

Referências

  1. Bhawnani, N., et al. Effectiveness of stem cell therapies in improving clinical outcomes in patients with heart failure. Cureus. 13 (8), e17236 (2021).
  2. Zakrzewski, W., Dobrzynski, M., Szymonowicz, M., Rybak, Z. Stem cells: past, present, and future. Stem Cell Research & Therapy. 10 (1), 68 (2019).
  3. Bukhari, A. B., Dutta, S., De, A. Image guidance in stem cell therapeutics: unfolding the blindfold. Current Drug Targets. 16 (6), 658-671 (2015).
  4. Momeni, A., Neelamegham, S., Parashurama, N. Current challenges for the targeted delivery and molecular imaging of stem cells in animal models. Bioengineered. 8 (4), 316-324 (2017).
  5. Gnecchi, M., Zhang, Z., Ni, A., Dzau, V. J. Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research. 103 (11), 1204-1219 (2008).
  6. D’Aloia, M. M., Zizzari, I. G., Sacchetti, B., Pierelli, L., Alimandi, M. CAR-T cells: the long and winding road to solid tumors. Cell Death & Disease. 9 (3), 282 (2018).
  7. Zhang, Q., et al. CAR-T cell therapy in cancer: tribulations and road ahead. Journal of Immunology Research. 2020, 1924379 (2020).
  8. Sterner, R. C., Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer Journal. 11 (4), 69 (2021).
  9. Shao, F., et al. Radionuclide-based molecular imaging allows CAR-T cellular visualization and therapeutic monitoring. Theranostics. 11 (14), 6800-6817 (2021).
  10. Sakemura, R., Can, I., Siegler, E. L., Kenderian, S. S. In vivo CART cell imaging: Paving the way for success in CART cell therapy. Molecular Therapy Oncolytics. 20, 625-633 (2021).
  11. Wang, Y., et al. Dendritic cell biology and its role in tumor immunotherapy. Journal of Hematology & Oncology. 13 (1), 107 (2020).
  12. Bulte, J. W. M., Shakeri-Zadeh, A. In vivo MRI tracking of tumor vaccination and antigen presentation by dendritic cells. Molecular Imaging and Biology. 24 (2), 198-207 (2022).
  13. Holland, J. P., Sheh, Y., Lewis, J. S. Standardized methods for the production of high specific-activity zirconium-89. Nuclear Medicine and Biology. 36 (7), 729-739 (2009).
  14. Larenkov, A., et al. Preparation of zirconium-89 solutions for radiopharmaceutical purposes: interrelation between formulation, radiochemical purity, stability and biodistribution. Molecules. 24 (8), 1534 (2019).
  15. Pandey, M. K., et al. A new solid target design for the production of 89Zr and radiosynthesis of high molar activity [89Zr]Zr-DBN. American Journal of Nuclear Medicine and Molecular Imaging. 12 (1), 15-24 (2022).
  16. Pandey, M. K., et al. Improved production and processing of 89Zr using a solution target. Nuclear Medicine and Biology. 43 (1), 97-100 (2016).
  17. Pandey, M. K., Engelbrecht, H. P., Byrne, J. P., Packard, A. B., DeGrado, T. R. Production of 89Zr via the 89Y(p,n)89Zr reaction in aqueous solution: effect of solution composition on in-target chemistry. Nuclear Medicine and Biology. 41 (4), 309-316 (2014).
  18. Bansal, A., et al. Novel 89Zr cell labeling approach for PET-based cell trafficking studies. EJNMMI Research. 5, 19 (2015).
  19. Bansal, A., et al. 89Zr]Zr-DBN labeled cardiopoietic stem cells proficient for heart failure. Nuclear Medicine and Biology. 90-91, 23-30 (2020).
  20. Friberger, I., et al. Optimisation of the synthesis and cell labelling conditions for [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS: a direct in vitro comparison in cell types with distinct therapeutic applications. Molecular Imaging and Biology. 23 (6), 952-962 (2021).
  21. Lee, S. H., et al. Feasibility of real-time in vivo 89Zr-DFO-labeled CAR T-cell trafficking using PET imaging. PLoS One. 15 (1), e0223814 (2020).
  22. Nicolas, C. T., et al. Hepatocyte spheroids as an alternative to single cells for transplantation after ex vivo gene therapy in mice and pig models. Surgery. 164 (3), 473-481 (2018).
  23. Yang, B., et al. Tracking and therapeutic value of human adipose tissue-derived mesenchymal stem cell transplantation in reducing venous neointimal hyperplasia associated with arteriovenous fistula. Radiology. 279 (2), 513-522 (2016).
  24. Nicolas, C. T., et al. Ex vivo cell therapy by ectopic hepatocyte transplantation treats the porcine tyrosinemia model of acute liver failure. Molecular Therapy. Methods & Clinical Development. 18, 738-750 (2020).
  25. Bansal, A., Sharma, S., Klasen, B., Rosch, F., Pandey, M. K. Evaluation of different 89Zr-labeled synthons for direct labeling and tracking of white blood cells and stem cells in healthy athymic mice. Scientific Reports. 12 (1), 15646 (2022).
  26. Behfar, A., et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. Journal of the American College of Cardiology. 56 (9), 721-734 (2010).
  27. Charoenphun, P., et al. 89Zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging. 42 (2), 278-287 (2015).
  28. Sato, N., et al. In vivo tracking of adoptively transferred natural killer cells in rhesus macaques using 89zirconium-oxine cell labeling and PET imaging. Clinical Cancer Research. 26 (11), 2573-2581 (2020).
  29. Volpe, A., Pillarsetty, N. V. K., Lewis, J. S., Ponomarev, V. Applications of nuclear-based imaging in gene and cell therapy: probe considerations. Molecular Therapy Oncolytics. 20, 447-458 (2021).
  30. Fogli, L. K., et al. Challenges and next steps in the advancement of immunotherapy: summary of the 2018 and 2020 National Cancer Institute workshops on cell-based immunotherapy for solid tumors. Journal for Immunotherapy of Cancer. 9 (7), e003048 (2021).
  31. Li, X., Hacker, M. Molecular imaging in stem cell-based therapies of cardiac diseases. Advanced Drug Delivery Reviews. 120, 71-88 (2017).
  32. Puges, M., et al. Retrospective study comparing WBC scan and 18F-FDG PET/CT in patients with suspected prosthetic vascular graft infection. European Journal of Vascular and Endovascular Surgery. 57 (6), 876-884 (2019).
  33. Butterfield, L. H. Dendritic cells in cancer immunotherapy clinical trials: are we making progress. Frontiers in Immunology. 4, 454 (2013).
  34. de Vries, I. J. M., et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotechnology. 23 (11), 1407-1413 (2005).
  35. Gosmann, D., et al. Promise and challenges of clinical non-invasive T-cell tracking in the era of cancer immunotherapy. EJNMMI Research. 12 (1), 5 (2022).
check_url/pt/64117?article_type=t

Play Video

Citar este artigo
Bansal, A., DeGrado, T. R., Pandey, M. K. Positron Emission Tomography Imaging of Cell Trafficking: A Method of Cell Radiolabeling. J. Vis. Exp. (200), e64117, doi:10.3791/64117 (2023).

View Video