Summary

识别骨髓增生异常综合征和急性髓系白血病中的骨髓微环境群体

Published: November 10, 2023
doi:

Summary

本文介绍了从骨髓增生异常综合征和急性髓系白血病的小鼠模型中分离和表征骨髓微环境群体的详细方案。该技术可识别非造血骨髓生态位(包括内皮细胞和间充质基质细胞)随疾病进展的变化。

Abstract

骨髓微环境由不同的细胞群组成,例如间充质基质细胞、内皮细胞、骨系细胞和成纤维细胞,它们为造血干细胞 (HSC) 提供支持。除了支持正常的造血干细胞外,骨髓微环境还在造血干细胞疾病的发展中发挥作用,例如骨髓增生异常综合征 (MDS) 和急性髓系白血病 (AML)。造血干细胞中 MDS 相关突变导致分化受阻和进行性骨髓衰竭,尤其是在老年人中。MDS通常可进展为难治性AML,这是一种以未成熟髓母细胞快速积累为特征的疾病。已知这些骨髓肿瘤患者的骨髓微环境会发生变化。在这里,描述了从骨髓增生异常综合征和急性髓系白血病的小鼠模型中分离和表征骨髓微环境细胞的综合方案。分离和表征骨髓生态位群体的变化有助于确定它们在疾病发生和进展中的作用,并可能导致开发针对骨髓基质群体中促癌改变的新疗法。

Introduction

骨髓微环境由造血细胞、非造血基质细胞和细胞外基质组成 1,2。这种微环境可以促进造血干细胞自我更新,调节谱系分化,并为骨组织提供结构和机械支持1,2,3,4,5。基质生态位包括骨系细胞、成纤维细胞、神经细胞和内皮细胞6,而造血生态位由淋巴和髓系群体组成 1,2,3。除了支持正常的造血干细胞外,骨髓微环境还可以在造血干细胞疾病的发展中发挥作用,例如MDS和AML 7,8,9,10,11。骨系细胞的突变已被证明可促进 MDS、AML 和其他骨髓增生性肿瘤的发展 10,12,13,14。

骨髓增生异常综合征是一组由造血干细胞突变引起的白血病前期疾病。MDS 通常与 HSC 分化受阻和发育不良细胞的产生有关,这通常会导致骨髓衰竭。MDS是美国最常诊断的髓系肿瘤,3年生存率为35%-45%15。MDS通常与转化为急性髓系白血病的高风险有关。这可能是一种致命的并发症,因为MDS衍生的AML对大多数疗法都有抵抗力,并且可能复发。由于造血干细胞和祖细胞的易位或突变而发的 AML 也通常对标准化疗产生耐药性 16,17。由于MDS和AML主要是老年人的疾病,大多数患者在60岁以上被诊断出来,因此大多数患者不符合根治性骨髓移植的条件。因此,迫切需要确定疾病进展的新调节因子。由于骨髓微环境可以为恶性细胞提供支持14,因此定义随着疾病进展的骨髓生态位的变化可能导致识别旨在抑制肿瘤生态位重塑的新疗法。因此,非常需要确定疾病进展的新调节因子。为此,识别和表征可能为恶性细胞提供支持的骨髓基质细胞群的变化至关重要。

已经生成了几种AML和MDS的小鼠模型,可用于研究疾病开始和进展期间骨髓微环境的变化6,1,19,20,21,22。在这里,描述了使用逆转录病毒诱导的 AML 6,20 的小鼠模型以及市售的高危 MDS 到AML 转化 19 的 Nup98-HoxD13 (NHD13) 模型来识别骨髓基质细胞群变化的方案。用从头移植 AML 细胞的小鼠在 20-30 天内死于该疾病6.NHD13小鼠在15-20周左右出现血细胞减少和骨髓发育不良,最终转化为AML,近75%的小鼠在32周左右死于这种疾病。为了分析小鼠模型骨髓微环境群体,收获骨骼,使用酶消化消化骨髓和骨针状体,然后通过磁性分选富集细胞以用于CD45-/Ter119-非造血群体。虽然之前已经描述了类似的分析11,13,22,23,24,25,但它们通常集中在骨髓或骨骼上,并且在分析中没有包括来自这两种来源的细胞。这些群体的综合表征与基因表达分析相结合,可以全面了解细胞造血微环境如何为疾病的发生和进展提供支持(图1)。虽然下面描述的方案侧重于逆转录病毒诱导的 AML 模型和遗传 MDS 模型,但这些策略可以很容易地用于研究任何感兴趣的小鼠模型的骨髓生态位的变化。

Protocol

所有动物实验均按照罗切斯特大学动物资源委员会批准的方案进行。小鼠在罗切斯特大学的动物护理设施中饲养和饲养。为了模拟高危 MDS,采用了市售的 NHD13 小鼠模型19。在该模型中,在疾病发作前 8 周龄的雌性 NHD13 小鼠中分析骨髓基质细胞。De novoAML的生成如前所述6,11,20。用于诱导 AML 的癌基因,例…

Representative Results

本文介绍了一种基于流式细胞术的方法,用于分析来自MDS和白血病小鼠模型的骨髓微环境群体,例如内皮细胞和间充质基质细胞(图1)。 图 2 描述了用于检测目标群体的门控策略,从通过前向和侧面散射曲线选择消化和 CD45/Ter119 耗尽部分中的细胞 (P1) 开始。白血病样品中细胞的门控示例如图1所示(图2A)。选择单峰,从该分…

Discussion

小鼠白血病模型已被广泛用于识别促进侵袭性髓系白血病进展的细胞内在和生态位驱动信号6,19,21。本文介绍了一种基于流式细胞术的综合方案,用于定义MDS和AML小鼠模型中骨髓微环境的细胞组成。

在从实验样品中获取流式细胞术数据之前,仔细补偿荧光重叠非常重要。包括所有适当的染色和门控也很重要…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们要感谢 URMC 流式细胞术核心。这项工作得到了美国血液学会学者奖、白血病研究基金会奖和美国国立卫生研究院R01DK133131资助和R01CA266617授予 JB 的支持。

Materials

1 mL pipette Tips  Genesee Scientific  24-165RL
1.7 mL Microcentrifuge Tubes AVANT L211511-CS
10 µL pipette Tips Genesee Scientific  24-140RL
10 mL Individually Wrapped Sterile Serological Pipettes Globe scientific 1760
1000 mL Vacuum Filtration Flask NEST 344021
15 mL Centrifuge Tube VWR 10026-076
2 mL Aspirating Pipette NEST 325011
200 µL pipette Tips Genesee Scientific  24-150-RL
25 mL Individually Wrapped Sterile Serological Pipettes Globe scientific 1780
5 mL Individually Wrapped Sterile Serological Pipettes Globe scientific 1740
5 mL Polystyrene Round-Bottom Tube  12 x 75 mm style Falcon 352054
5 mL Polystyrene Round-Bottom Tube with Cell Strainer Cap 12 x 75 mm style Falcon 352235
50 mL Centrifuge Tube NEST 602052
6 Well, Flat Bottom with Low Evaporation Lid Falcon 353046
Absorbent Underpads with Waterproof Moisture Barrier VWR 56616-031
APC MicroBeads Miltenyi  130-090-855
autoMACS Pro Separator Miltenyi Biotec GmBH 4425745
BD Pharmingen Purified Rat Anti-Mouse CD16/CD32 (Mouse BD Fc Block) BD Biosciences 553141 0.5 mg/mL 
Bovine Serum Albumin Sigma-Aldrich A7906 66.000 g/mol
Brilliant Violet 421 anti-mouse Ly-6A/E (Sca-1) Antibody (D7) Invitrogen 404-5981 0.2 mg/mL
C57BL/6J Mice Jackson Laboratory  664
Carbon Dioxide Gas Tank Airgas CD50
CD31 (PECAM-1) Monoclonal Antibody (390), PE-Cyanine7 Invitrogen 25-0311-82 0.2 mg/mL
CD45 Monoclonal Antibody (30-F11), APC Invitrogen 17-0451-82 0.2 mg/mL
Cell Strainer 70 µm Nylon  Falcon 352350
Cole-Parmer Essentials Mortar and Pestle; Agate, 125 mL Cole-Parmer EW-63100-62
Collagenase from Clostridium histolyticum Sigma-Aldrich C5138-500MG
Collagenase Type I STEMCELL 7415
Corning Mini Centrifuge CORNING 6770
Corning Stripettor Ultra Pipet Controller Corning 4099
Deoxyribonuclease I from bovine pancreas Sigma-Aldrich D4513
Dispase II, powder Gibco 117105041
DPBS 10x gibco 14200-075
eBioscience 1x RBC Lysis Buffer Invitrogen 00-4333-57
Ethanol absolute, KOPTEC, meets analytical specification of BP, Ph. Eur., USP (200 Proof) VWR 89125-174
Fine scissors – sharp Fine Science Tools 14061-10
Foundation B Fetal Bovine Serum GeminiBio 900-208
Gilson PIPETMAN L Pipette Starter Kits FisherScientific  F167370G
Graefe Forceps Fine Science Tools 11051-10
Hank's Balanced Salt Solution (HBSS) 10x gibco 14185-052
Hemocytometer Fisher 02-671-10
Incubator  BINDER C150-UL
Kimwipes KIMTECH K222101
LABGARD Class II, Type A2 Biological Safety Cabinet Nuaire NU-425-400
LD Columns Miltenyi Biotec GmBH 130-042-901
LSE Vortex Mixer CORNING 6775
LSRII/Fortessa/Symphony A1 Becton, Dickinson and Company 647800L6
MACS MULTI STAND  Miltenyi Biotec GmBH 130-042-303
MACsmix Tube Rotator  Miltenyi Biotec GmBH 130-090-753
mIgG Millipore-Sigma 18765-10mg 2 mg/mL 
Nup98-HoxD13 (NHD13) Mice Jackson Laboratory  010505
PE anti-mouse CD51 Antibody (RMV-7) Biolegend 104106 0.2 mg/mL
PE/Cyanine5 anti-mouse CD140a Antibody (RUO) Biolegend 135920 0.2 mg/mL
Penicillin-Streptomycin  Gibco 15140122 10,000 U/mL
Plastipak 3 mL Syringe Becton, Dickinson and Company 309657
Propidium Iodide – 1.0 mg/mL Solution in Water ThermoFisher Scientific P3566
QuadroMACS  Separator  Miltenyi Biotec GmBH 130-090-976
Sorvall X Pro / ST Plus Series Centrifuge Thermo Scientific  75009521
TER-119 Monoclonal Antibody (TER-119), APC Invitrogen 17-5921-82 0.2 mg/mL
Trypan Blue Solution 0.4% Gibco 15-250-061
Ultrapure 0.5 M EDTA, pH 8.0  Invitrogen 15575-038

Referências

  1. Morrison, S. J., Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature. 505 (7483), 327-334 (2014).
  2. Boulais, P. E., Frenette, P. S. Making sense of hematopoietic stem cell niches. Blood. 125 (17), 2621-2629 (2015).
  3. Pinho, S., Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 20 (5), 303-320 (2019).
  4. Kfoury, Y., Scadden, D. T. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell. 16 (3), 239-253 (2015).
  5. Itkin, T., et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 532 (7599), 323-328 (2016).
  6. Bajaj, J., et al. Cd98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell. 30 (5), 792-805 (2016).
  7. Konopleva, M. Y., Jordan, C. T. Leukemia stem cells and microenvironment: Biology and therapeutic targeting. J Clin Oncol. 29 (5), 591-599 (2011).
  8. Kim, Y. W., et al. Defective notch activation in microenvironment leads to myeloproliferative disease. Blood. 112 (12), 4628-4638 (2008).
  9. Walkley, C. R., et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell. 129 (6), 1097-1110 (2007).
  10. Kode, A., et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature. 506 (7487), 240-244 (2014).
  11. Hanoun, M., et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell. 15 (3), 365-375 (2014).
  12. Raaijmakers, M. H., et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 464 (7290), 852-857 (2010).
  13. Frisch, B. J., et al. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood. 119 (2), 540-550 (2012).
  14. Bajaj, J., Diaz, E., Reya, T. Stem cells in cancer initiation and progression. J Cell Biol. 219 (1), e201911053 (2020).
  15. Sekeres, M. A., Taylor, J. Diagnosis and treatment of myelodysplastic syndromes: A review. Jama. 328 (9), 872-880 (2022).
  16. Zeisig, B. B., Kulasekararaj, A. G., Mufti, G. J., So, C. W. Snapshot: Acute myeloid leukemia. Cancer Cell. 22 (5), 698-698.e1 (2012).
  17. Krivtsov, A. V., Armstrong, S. A. Mll translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 7 (11), 823-833 (2007).
  18. Yoshimi, A., et al. Coordinated alterations in rna splicing and epigenetic regulation drive leukaemogenesis. Nature. 574 (7777), 273-277 (2019).
  19. Lin, Y. W., Slape, C., Zhang, Z., Aplan, P. D. Nup98-hoxd13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood. 106 (1), 287-295 (2005).
  20. Kwon, H. Y., et al. Tetraspanin 3 is required for the development and propagation of acute myelogenous leukemia. Cell Stem Cell. 17 (2), 152-164 (2015).
  21. Bajaj, J., et al. An in vivo genome-wide crispr screen identifies the rna-binding protein staufen2 as a key regulator of myeloid leukemia. Nat Cancer. 1 (4), 410-422 (2020).
  22. Krivtsov, A. V., et al. Transformation from committed progenitor to leukaemia stem cell initiated by mll-af9. Nature. 442 (7104), 818-822 (2006).
  23. Baryawno, N., et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell. 177 (7), 1915-1932.e16 (2019).
  24. Tikhonova, A. N., et al. The bone marrow microenvironment at single-cell resolution. Nature. 569 (7755), 222-228 (2019).
  25. Balderman, S. R., et al. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood. 127 (5), 616-625 (2016).
  26. Amend, S. R., Valkenburg, K. C., Pienta, K. J. Murine hind limb long bone dissection and bone marrow isolation. JoVE. 110, e53936 (2016).
  27. JoVE Science Education Database. Science Education Database. Basic Methods in Cellular and Molecular Biology. Using a Hemacytometer to Count Cells. , (2023).
  28. Passaro, D., et al. Increased vascular permeability in the bone marrow microenvironment contributes to acute myeloid leukemia progression and drug response. Blood. 128 (22), 2662 (2016).
  29. Xu, C., et al. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat Commun. 9 (1), 2449 (2018).
  30. Baccin, C., et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol. 22 (1), 38-48 (2020).
  31. Ebrahimi Dastgurdi, M., Ejeian, F., Nematollahi, M., Motaghi, A., Nasr-Esfahani, M. H. Comparison of two digestion strategies on characteristics and differentiation potential of human dental pulp stem cells. Arch Oral Biol. 93, 74-79 (2018).
  32. Abreu-Velez, A. M., Howard, M. S. Collagen IV in normal skin and in pathological processes. N Am J Med Sci. 4 (1), 1-8 (2012).
check_url/pt/66093?article_type=t

Play Video

Citar este artigo
Kaszuba, C. M., Rodems, B. J., Sharma, S., Franco, E. I., Ashton, J. M., Calvi, L. M., Bajaj, J. Identifying Bone Marrow Microenvironmental Populations in Myelodysplastic Syndrome and Acute Myeloid Leukemia. J. Vis. Exp. (201), e66093, doi:10.3791/66093 (2023).

View Video