Summary

マイクロ電極の構造によって生成されたAC動電現象

Published: July 28, 2008
doi:

Summary

マイクロナノスケールは、より現実のようになっている可能にした技術で流体と懸濁粒子を操作すると、AC動電学のように、開発を進めています。ここで、我々は、これらのデバイスを作製する方法および実験観察を解釈する方法、AC動電学の背後にある物理学を議論する。

Abstract

AC動電学の分野は​​急速にミクロとラボオンチップアプリケーションに不可欠なナノスケール、上に動的な流体と粒子​​の操作を実行することができるため、成長しています。 AC動電現象は、その液体または懸濁粒子に作用する(誘電体または生物学的な材料で作られたものも含めて)力を生成し、それらの方法1、2を驚くべきに移動させるために電界を使用してください。シングルチャンネル内で、AC動電学はこのようなアクティブなマイクロ混合、粒子分離、粒子の位置とマイクロパターニングなどの多くの本質的なオンチップの操作を行うことができます。単一のデバイスは、単純に印加電圧の周波数や振幅などの動作パラメータを調整することによって、それらの操作のいくつかを達成することができる。適切な電界が容易にマイクロチャネルに統合された微小電極を作成することができます。それはAC動電学の可能性が高い医療診断3-5、環境モニタリング6、国土安全保障7日に大きな影響を持っていることを、この分野で驚異的な成長から明らかである。

一般的には、動作パラメータに一意の依存関係を持つ3つのAC動電現象(AC電気浸透、誘電泳動とAC電熱効果)それぞれがあります。これらの動作パラメータの変化は、このように、粒子または流体の挙動を変える、別の支配的になる一つの現象を引き起こす可能性があります。

それはAC動電学の根底にある複雑な物理学のために、粒子と流体の挙動を予測することは困難である。それは物理学を説明し、粒子と流体の挙動を解明するために本書の目標です。我々の分析はまた、それらを生成する電極構造を作製する方法を説明し、いくつかの一般的なデバイスのデザインを使用して実験観察の広い数を解釈する方法。このビデオの記事では、科学者やエンジニアは、これらの現象を理解する助けとなると、彼らの研​​究ではAC動電学を使い始めることをお勧めすることがあります。

Protocol

ガラス基板上にCr / Au電​​極を作製したパート1A:ウェットエッチング法 *最高品質のデバイスの場合、製造工程は、クリーンルーム環境で実行する必要がありますまたは層流フードの下になるようほこり、その他の汚染物質は、パターンには影響しません。 4インチのガラスのスライドによる2インチが置かれて加熱(80℃)ピラニア溶液(5時0…

Discussion

このビデオでは、我々はAC動電現象によって引き起こされる粒子と流体操作の挙動を幅広く示している。これらの現象を生成する電極は、製造が容易であり、簡単に他の多くのシステムに統合することができます。これまでに示したように、AC動電学の使用のための多数のアプリケーションがあります。これらのデバイスの多様性だけでなく、操作の迅速な性質は、それらが特に魅力的です。ヘルスケアと他…

Materials

Material Name Tipo Company Catalogue Number Comment
2″ by 4″ Pyrex Glass Slide Substrate     Pyrex 7740
chrome mask material     This photomask will have the microelectrode patterns on them and can be ordered from a variety of microfabrication centers.
PDMS Microchannels material     These may be fabricated and used in-house or a simple microscope slide will suffice.
Hydrogen Peroxide 30% Reagent Fisher Scientific 7722-84-1 Certified ACS, Fisher Scientific
Sulfuric Acid Reagent Fisher Scientific A300-212 Certified ACS Plus
Acetone Electronic Grade Reagent Fisher Scientific A946-4  
Shipley 1827 Positive Photoresist Reagent Microchem Inc.    
Shipley 351 Developer Reagent Microchem Inc.    
Gold Etchant Reagent Transene Company, Inc. Type TFA  
Chrome Photomask Etchant Reagent Cyantek Corporation CR-7S  
NR-7 1500 PY Negative Resist Reagent Futurrex    
RD6 Developer Reagent Futurrex    

Referências

  1. Ramos, A., et al. AC Electrokinetics: a review of forces in microelectrode structures. Journal of Physics D: Applied Physics. 31, 2338-2353 (1998).
  2. Morgan, H. y. w. e. l., Green, N. G. AC Electrokinetics: colloids and nanoparticles. , (2002).
  3. Toner, M., Irimia, D. Blood-on-a-chip. Annual Review of Biomedical Engineering. 2005, 77-103 (2005).
  4. Ahn, C. H., Choi, J. -. W., Beaucage, G., Nevin, J. H., Lee, J. -. B., Puntambekar, A., Lee, J. Y. Disposable smart lab on a chip for point of care clinical diagnostics. 282, 399-401 (1998).
  5. Vespoorte, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis. 23, 677-712 (2002).
  6. Rajaraman, S., et al. Rapid, low cost microfabrication technologies toward realization of devices for dielectrophoretic manipulation of particles and nanowires. Sensors and Actuators B: Chemical. 114, 392-401 (2006).
  7. Ali, Z. Lab-on-a-chip for terrorist weapons management. Measurement and Control. 38, 87-91 (2005).
  8. Voldman, J. o. e. l., Rosenthal, A. d. a. m. Dielectrophoretic Traps for Single-particle Patterning. Biophysical Journal. 88, 2193-2205 (2005).
  9. Ramachandran, T. R., Baur, C., Bugacov, A., Madhukar, A., Koel, B. E., Requicha, A., Gazen, C. Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope. Nanotechnology. 9, 237-245 (1998).
  10. Sigurdson, M. a. r. i. n., Wang, D., Meinhart, C. D. Electrothermal stirring for heterogeneous immunoassays. Lab Chip. 5, 1366-1373 (2005).
  11. Urbanski, J. o. h. n. . P. a. u. l., Levitan, J. e. r. e. m. y. A., Bazant, M. a. r. t. i. n. Z., Thorsen, T. Fast ac electro-osmotic micropumps with non-planar electrodes. Appl. Phys. Lett. 89, 143508 (2006).
  12. Fatoyinbo, H. O., et al. An integrated dielectrophoretic quartz crystal microbalance (DEP-QCM) device for rapid biosensing applications. Biosens Bioelectron. 23, 225-232 (2007).

Play Video

Citar este artigo
Hart, R., Oh, J., Capurro, J., Noh, H. (. AC Electrokinetic Phenomena Generated by Microelectrode Structures. J. Vis. Exp. (17), e813, doi:10.3791/813 (2008).

View Video