Summary

可視化RNAの局在にアフリカツメガエル卵母細胞

Published: January 14, 2010
doi:

Summary

の可視化<em> in vivoで</em> RNAのトランスポートは、蛍光標識RNA転写物のマイクロインジェクションによってに行われます<em>アフリカツメガエル</em>卵母細胞、共焦点顕微鏡に続く。

Abstract

RNAの局在は、細胞極性の確立に保存されたメカニズムです。 VG1 mRNAはアフリカツメガエルの卵母細胞と空間的にVG1蛋白質の遺伝子発現を制限する行為の植物極に局在化する。この方法でVG1分布の厳密な制御は、発生中の胚の適切な胚層の仕様が必要です。 mRNAの3'UTRのRNA配列の要素は、VG1ローカライズ要素(VLE)は必須と直接輸送するのに十分です。 in vivoで VG1 mRNAの認識と輸送を調べるため、我々は、単純な視覚的な読み出しを経由してトランスファクター向けトランスポートメカニズムの広範な分析を可能にするイメージング技術を開発した。

RNAの局在を可視化するために、我々は、蛍光標識VLEのRNAを合成し、個々の卵母細胞にその写しを顕微注入する。注入されたRNAの輸送を可能にするために卵母細胞の培養後、卵母細胞は、前の共焦点顕微鏡によるイメージングに固定し、脱水です。 mRNAの局在パターンの可視化は、RNAのトランスポートの完全な経路を監視し、シス作用転写内の要素とVLEに結合するトランス作用因子のためにRNAの輸送を指示するの役割を識別するための読み出しを提供する(ルイスら、2008、 Messittら、2008)。我々は、追加のRNAやタンパク質(ギャニオンとモウリー、2009年、Messittら、2008)との共局在を介し​​てこの手法を拡張しており、モーター蛋白質の崩壊と細胞骨格との組み合わせで(Messittら、2008)プローブにmRNAの局在のメカニズム。

Protocol

パート1:蛍光標識mRNAの転写。 RNAの局在化の要素や他の関連配列を含むプラスミドDNAを線形化し、DEPC処理H 2 Oでの1μg/μLで再懸濁します。 DNAテンプレートは、T7、SP6、またはT3 RNAポリメラーゼによる転写のための上流のプロモーター部位を持っている必要があります。 滅菌1.5mlチューブに下記の試薬を追加します。 A. 10X送信バッファ(M&Mを参照) </td…

Discussion

ここでは、 アフリカツメガエルの卵母細胞におけるmRNAの局在を可視化するためのプロトコルを提示している。蛍光標識RNA転写物を使用して、このメソッドは、以前にジゴキシゲニン標識転写産物を得て、より簡単かつ迅速にその場ベースのアプローチよりもよりも、対ノイズ比の高い信号(モウリーとメルトン、1992、ガウトリューら、1997)があります。この方法を使用して、我々は…

Disclosures

The authors have nothing to disclose.

Acknowledgements

RNAの局在に関する私たちの仕事は、KLMにNIH(R01GM071049)からの助成金によってサポートされています。

Materials

10X Tx buffer

  • 60 mM MgCl2
  • 400 mM Tris-HCl (pH 7.5)
  • 20 mM spermidine-HCl

20x cap/NTP mix

  • 10 mM CTP
  • 10 mM ATP
  • 9 mM UTP
  • 2 mM GTP
  • 20 mM G(ppp)G Cap Analog (New England Biolabs)

G-50 column

  • Hydrate 5 g Sephadex G-50 beads (Sigma Aldrich) in 100 ml deionized H2O. DEPC-treat for 30 min. and autoclave. Store incomplete stock at room temperature. Before use, add the following RNase-free solutions:
  • 0.5 ml 0.2 M EDTA
  • 1 ml 1 M Tris pH 8.0
  • 0.5 ml 20% SDS
  • Store complete G-50 solution at 4° C.
  • Remove and discard the plunger from a 3 ml syringe (BD Biosciences) and place the barrel of the syringe into a 15 ml conical tube (Corning). Plug the syringe with a small amount of glass wool (a plug about half the size of a penny).
  • Swirl complete G-50 solution to resuspend beads.
  • Add 2 ml G-50 solution to the empty column.
  • Spin for 1 minute at 1,000 x g in benchtop centrifuge.
  • Add 200 μl DEPC-treated deionized H2O to each column. Spin.
  • Repeat wash twice more for a total of three washes.
  • Remove syringe barrel to a fresh 15 ml conical tube.

Collagenase solution

  • 75 mg collagenase from Clostridium histolyticum (Sigma Aldrich)
  • 25 ml 0.1 M KPO3+ (pH 7.4)

MBSH buffer

  • 88 mM NaCl
  • 1 mM KCl
  • 2.4 mM NaHCO3
  • 0.82 mM MgSO4 X 7H2O
  • 0.33 mM Ca(NO3)2 X 4H2O
  • 0.41 mM CaCl2 X 6H2O
  • 10 mM HEPES (pH 7.6)

Oocyte Culture Medium

  • 50% L15 medium
  • 15 mM HEPES (pH 7.6)
  • 1 mg/ml insulin
  • 100 mg/ml gentamicin
  • 50 U/ml nystatin
  • 50 U/ml penicillin
  • 50 mg/ml streptomycin

MEMFA solution

  • 0.1 M MOPS (pH 7.4)
  • 2 mM EGTA
  • 1 mM MgSO4
  • 3.7% formaldehyde

Computing RNA yield

  • Determine CPM in “input” and “incorporated” samples using a standard scintillation counter.
  • incorporation = (“incorporated”) / (10 x “input”)
  • Typical incorporation values range between ~0.03 and 0.10.
  • Maximum theoretical yields for different polymerases:
    T7, T3, SP6 – 2.64 μg
  • Reaction yield in μg = (maximum yield of polymerase used) X (incorporation)
  • Dilute RNA to 50 nM = (μg RNA) / 320 / (length of RNA in bases) / (5X10-8)
  • The reaction usually yields ~50-100 μl of RNA at 50 nM.

References

  1. Cohen, S., Au, S., Pant, N. Microinjection of Xenopus laevis oocytes. JoVE. 24, (2009).
  2. Dumont, J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153-179 (1972).
  3. Gagnon, J. A., Mowry, K. L. RNA transport in ovo: Simultaneous visualization of two RNAs. Mol Reprod Dev. 76, 1115-1115 (2009).
  4. Gautreau, D., Cote, C. A., Mowry, K. L. Two copies of a subelement from the Vg1 RNA localization sequence are sufficient to direct vegetal localization in Xenopus oocytes. Development. 124, 5013-5020 (1997).
  5. Lewis, R. A., Gagnon, J. A., Mowry, K. L. PTB/hnRNP I is required for RNP remodeling during RNA localization in Xenopus oocytes. Mol Cell Biol. 28, 678-6786 (2008).
  6. Messitt, T. J., Gagnon, J. A., Kreiling, J. A., Pratt, C. A., Yoon, Y. J., Mowry, K. L. Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes. Dev Cell. 15, 426-436 (2008).
  7. Mowry, K. L., Melton, D. A. Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. Science. 255, 991-994 (1992).
  8. Yoon, Y. J., Mowry, K. L. Xenopus Staufen is a component of a ribonucleoprotein complex containing Vg1 RNA and kinesin. Development. 131, 3035-3045 (2004).
check_url/1704?article_type=t

Play Video

Cite This Article
Gagnon, J. A., Mowry, K. L. Visualizing RNA Localization in Xenopus Oocytes. J. Vis. Exp. (35), e1704, doi:10.3791/1704 (2010).

View Video