Summary

ADN de isótopos estables de palpado (ADN-SIP)

Published: August 02, 2010
doi:

Summary

ADN de isótopos estables de sondeo es un método de cultivo independiente para identificar y caracterizar las comunidades activas de microorganismos que son capaces de utilizar sustratos específicos. Asimilación de sustrato enriquecido en los isótopos pesados ​​lleva a la incorporación de los átomos marcados en la biomasa microbiana. Ultracentrifugación en gradiente de densidad recupera la etiqueta de ADN para posterior análisis molecular.

Abstract

ADN de isótopos estables de sondeo (ADN-SIP) es una poderosa técnica para la identificación de microorganismos activos que asimilar ciertos sustratos de carbono y nutrientes en la biomasa celular. Como tal, esta técnica de cultivo-independiente ha sido una importante metodología para la asignación de la función metabólica de las diversas comunidades que habitan en una amplia gama de ambientes terrestres y acuáticos. Después de la incubación de una muestra ambiental con isótopos estables compuestos marcados, el ácido nucleico extraído se somete a ultracentrifugación en gradiente de densidad y el fraccionamiento del gradiente posteriores para separar los ácidos nucleicos de diferentes densidades. La purificación del ADN a partir de cloruro de cesio recupera no marcado y marcado de ADN para posterior caracterización molecular (por ejemplo, huellas dactilares, microarrays, bibliotecas clon, la metagenómica). Este protocolo de vídeo JoVe proporciona visuales paso a paso las explicaciones del protocolo de gradiente de densidad gradiente de fraccionamiento de ultracentrifugación, y la recuperación de ADN marcado. El protocolo también incluye la muestra de datos SIP y pone de relieve importantes consejos y precauciones que se deben considerar para asegurar el éxito de ADN-SIP análisis.

Protocol

1. Preparación de los reactivos ADN-SIP requiere el uso de reactivos que se deben preparar con antelación del procedimiento actual. Las instrucciones para la preparación de cada reactivo se muestran en esta sección y se modifican a partir de una anterior protocolo SIP 1. Cloruro de cesio (CsCl) solución para la preparación de los gradientes de SIP – Preparar una solución 7.163 M CsCl gradualmente disolviendo 603,0 g de CsCl en agua destilada y desionizada (DDC <s…

Discussion

El diseño apropiado de isótopos estables experimentos de sondeo es de importancia crítica para la obtención de ADN marcado por encima de la comunidad de fondo sin etiquetar. Consideraciones relacionadas con la muestra de los tiempos de incubación, las concentraciones de sustrato, las condiciones de incubación (por ejemplo nutrientes, contenido de humedad del suelo), cruzar la alimentación y la replicación se han discutido en otros lugares 10,18 y se recomienda al lector consultar estas publicaciones e…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabajo fue apoyado por el Proyecto Estratégico de Subvenciones y descubrimiento de JDN de las Ciencias Naturales e Ingeniería de Investigación de Canadá (NSERC).

Materials

Material Name Type Company Catalogue Number Comment
Bromophenol Blue Reagent Fisher Scientific BP115-25  
Cesium chloride Reagent Fisher Scientific BP210-500  
Ethanol, reagent grade Reagent Sigma-Aldrich 652261  
Ethidium bromide Reagent Sigma-Aldrich E1510  
Hydrochloric acid Reagent Fisher Scientific 351285212  
Linear polyacrylamide Reagent Applichem A6587  
Polyethylene Glycol 6000 Reagent VWR CAPX1286L-4  
Potassium Chloride Reagent Fisher Scientific AC42409-0010  
Sodium Chloride Reagent Fisher Scientific S2711  
Sodium Hydroxide pellets Reagent Fisher Scientific S3181  
Tris base Reagent Fisher Scientific BP1521  
Dark Reader Equipment Clare Chemical DR46B  
Microcentrifuge Equipment Eppendorf 5424 000.410  
Nanodrop 2000 Equipment Fisher Scientific 361013650  
Infusion pump Equipment Braintree Scientific N/A Model Number: BSP
See www.braintreesci.com for ordering details.
Tube sealer Equipment Beckman-Coulter 358312  
Ultracentrifuge Equipment Beckman-Coulter    
Ultracentrifuge rotor Equipment Beckman-Coulter 362754  
Ultraviolet light source Equipment UVP Inc. 95-0017-09 Any UV source will suffice
Ultraviolet light face shield Equipment Fisher Scientific 114051C  
Butyl rubber stoppers, gray Material Sigma-Aldrich 27232  
Centrifuge tubes Material Beckman-Coulter 342412  
Hypodermic needle, 23 gauge, 2” length Material BD 305145  
Microfuge tubes, 1.5 mL Material DiaMed AD151-N500  
Open center seals, 20 mm diameter Material Sigma-Aldrich 27230-U  
Pasteur pipettes, glass Material Fisher Scientific 13-678-6C  
Pipet tips Material DiaMed BPS340-1000 Catalogue number is for 200 μl tips. 10 or 20 μl tips may be purchased from the same source
Pump tubing 1.5 mm bore x 1.5 mm wall Material Appleton Woods    
Screw-cap tubes, 15 mL Material DiaMed AD15MLP-S  
Serum vials, 125 mL volume Material Sigma-Aldrich Z114014  
Syringe, 60 mL Material BD 309653  

References

  1. Neufeld, J. D. DNA stable-isotope probing. Nat. Protocols. 2, 860-866 (2007).
  2. Neufeld, J. D., Boden, R., Moussard, H., Schäfer, H., Murrell, J. C. Substrate-specific clades of active marine methylotrophs associated with a phytoplankton bloom in a temperate coastal environment. Appl. Environ. Microbiol. 74, 7321-7328 (2009).
  3. Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E., Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885-6899 (2005).
  4. Padmanabhan, P. Respiration of 13C-labelled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labelled soil DNA. Appl. Environ. Microbiol. 69, 1614-1622 (2003).
  5. Bernard, L. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ. Microbiol. 9, 752-764 (2007).
  6. Haichar, e. l. Z. a. h. a. r., F, . Identification of cellulolytic bacteria in soil by stable isotope probing. Environ. Microbiol. 9, 625-634 (2007).
  7. Addison, S., McDonald, I., Lloyd-Jones, G. Stable isotope probing: Technical considerations when resolving 15N-labelled RNA in gradients. J. Microbiol. Meth. 80, 70-75 (2009).
  8. Buckley, D. H., Huangyutitham, V., Hsu, S. -. F., Nelson, T. A. Stable isotope probing with 15N achieved by disentangling the effects of genome G + C content and isotope enrichment on DNA density. Appl. Environ. Microbiol. 73, 3189-3195 (2007).
  9. Schwartz, E. Characterization of growing microorganisms in soil by stable isotope probing with H218O. Appl. Environ. Microbiol. 73, 2541-2546 (2007).
  10. Neufeld, J. D., Dumont, M. G., Vohra, J., Murrell, J. C. Methodological considerations for the use of stable isotope probing in microbial ecology. Microb. Ecol. 53, 435-442 (2007).
  11. Martineau, C., Whyte, L., Greer, C. Development of a SYBR safe technique for the sensitive detection of DNA in cesium chloride density gradients for stable isotope probing assays. J. Microbiol. Meth. 73, 199-202 (2008).
  12. Bartram, A. K., Poon, C., Neufeld, J. D. Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacrylamide as an alternative co-precipitant. Biotechniques. 47, 1019-1022 (2009).
  13. Chen, Y. Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands. Environ. Microbiol. 10, 2609-2622 (2008).
  14. Neufeld, J. D., Chen, Y., Dumont, M. G., Murrell, J. C. Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ. Microbiol. 10, 1526-1535 (2008).
  15. Kalyuzhnaya, M. High-resolution metagenomics targets specific functional types in complex microbial communities. Nat. Biotechnol. 26, 1029-1034 (2008).
  16. Binga, E. K., Lasken, R. S., Neufeld, J. D. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J. 2, 233-241 (2008).
  17. Green, S. J., Leigh, M. B., Neufeld, J. D., Timmis, K. N. . Microbiology of Hydrocarbon and Lipid Microbiology. , 4137-4158 (2010).
  18. Neufeld, J. D., Wagner, M., Murrell, J. C. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1, 103-110 (2007).
  19. Gallagher, E., McGuinness, L., Phelps, C., Young, L. Y., Kerkhof, L. J. DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stable-isotope probing. Appl. Environ. Microbiol. 71, 5192-5196 .
check_url/2027?article_type=t

Play Video

Cite This Article
Dunford, E. A., Neufeld, J. D. DNA Stable-Isotope Probing (DNA-SIP). J. Vis. Exp. (42), e2027, doi:10.3791/2027 (2010).

View Video