Summary

建立评估膜内骨化硬性稳定骨折,牵张成骨,或临界中小企业缺损愈合

Published: April 11, 2012
doi:

Summary

本文介绍了一种稳定的长骨骨折的方法是基于改良Ilizarov外固定器的应用<sup> 1-3</sup>。固定架和创造的骨损伤的应用后,可以评估愈合,牵张可以被执行,或者可以创建和非工会或大小的关键缺陷,用于研究治疗干预。

Abstract

评估骨骼修复的模式是用于开发用于临床治疗骨折的治疗至关重要。机械稳定性骨损伤愈合中起着很大的作用。在最坏的情况下,机械不稳定,可能导致延迟或在非工会的人。然而,运动还可以促进愈合过程。在骨折有运动软骨组织形式,以稳定骨折的骨端,骨和软骨逐渐取代通过软骨内骨化发育过程的概括。相反,如果骨折稳定硬性骨形成直接通过膜内骨化。临床上,同时出现软骨内和膜内骨化。为了有效地复制这个过程中研究者一根针插入髓腔的断骨Bonnarens 4的 。这种实验方法提供了极好的横向稳定性,同时允许rotatio坚持信号不稳定。然而,我们理解的机制,规范这两个不同的过程,也可以加强实验隔离这些进程。我们已经开发出一种稳定的协议,提供旋转和横向稳定。在这种模式下,膜内骨化是唯一的模式,观察愈合,愈合的参数,可以在不同品系的转基因小鼠5-7,8,9生物活性分子的应用,改变生理参数的愈合10后,比较,修改后牵张12后的金额或11稳定时间,创 ​​造一个非工会13后,或之后创建一个关键尺寸的缺陷。在这里,我们说明如何申请学习和小鼠胫骨骨折愈合牵张改良Ilizarov外固定器。

Protocol

所有的程序批准由加州大学旧金山分校的机构动物照顾及使用委员会,并符合国家准则。 1。手术前准备的固定器前创造稳定骨折,需要装配的定制设计的外固定器。定制设计的外固定帧由两个铝环由三个不锈钢钢#0/56螺纹棒,六角螺母8#2/56,17(一小部分公司,佛罗里达州迈阿密湖3)匹配的螺栓稳定。 每骨折,需要两个铝环。一环组装六角螺母4#2/56…

Discussion

两种不同的方式取决于机械稳定性(综述:14)骨头愈合。当留在不稳定的一个大型软骨模板形式取代骨骨折的差距,以弥合断骨两端。近端和远端断裂,骨内,骨膜及骨内膜的膜内骨化形成直接的。相比之下,发生在稳定骨折愈合完全通过膜内骨化3。然而,这两个进程之间的开关调节的具体机制不明。有证据表明,机械环境中的干细胞的命运是基因控制,并可以改变。在小鼠体…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由NIAMS以R01-AR053645。

Materials

Name of the reagent Company Catalogue number Comments
0.25mm insect pin Fine Science Tool 26000-25 Blacked Anodized Steel, 0.25mm rod diameter, 4cm length
Stainless Steel Hex Nut Small Parts #2-56 1/8″ length, 56 threads per inch
Stainless Steel Hex Nut Small Parts #0-80 1/8″ length, 80 threads per inch
Stainless Steel Machine Screw Small Parts #0-80 1/8″ length, 80 threads per inch
Stainless Steel Machine Cut Threaded Rod Small Parts #0-80 6″ length, 80 threads per inch
18-8 Stainless Steel Head Machine Screw McMaster-Carr   2-56 Threads, 3/6″ length
External Fixation Device Machine shop Custom-designed  

References

  1. Ilizarov, G. A., Lediaev, V. I., Shitin, V. P. The course of compact bone reparative regeneration in distraction osteosynthesis under different conditions of bone fragment fixation (experimental study). Eksperimentalnaia Khirurgiia i Anesteziologiia. 14, 3-12 (1969).
  2. Ilizarov, G. A., Deviatov, A. A. Surgical elongation of the leg. Ortopediia Travmatologiia i Protezirovanie. 32, (1971).
  3. Thompson, Z., Miclau, T., Hu, D., Helms, J. A. A model for intramembranous ossification during fracture healing. J. Orthop. Res. 20, 1091-1098 (2002).
  4. Bonnarens, F., Einhorn, T. A. Production of a standard closed fracture in laboratory animal. J. Orthop. Res. 2, 97-101 (1984).
  5. Colnot, C., Thompson, Z., Miclau, T., Werb, Z., Helms, J. A. Altered fracture repair in the absence of MMP9. Development. 130, 4123-4133 (2003).
  6. Lange, J. Action of IL-1beta during fracture healing. J. Orthop. Res. 28, 778-784 (2010).
  7. Xing, Z. Multiple roles for CCR2 during fracture healing. Dis. Model Mech. 3, 451-458 (2010).
  8. Lu, C. Recombinant human bone morphogenetic protein-7 enhances fracture healing in an ischemic environment. J. Orthop. Res. , (2009).
  9. Yu, Y. Y., Lieu, S., Lu, C., Colnot, C. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. Bone. 47, 65-73 (2010).
  10. Lu, C., Miclau, T., Hu, D., Marcucio, R. S. Ischemia leads to delayed union during fracture healing: a mouse model. J. Orthop. Res. 25, 51-61 (2007).
  11. Miclau, T. Effects of delayed stabilization on fracture healing. J. Orthop. Res. 25, 1552-1558 (2007).
  12. Tay, B. K., Le, A. X., Gould, S. E., Helms, J. A. Histochemical and molecular analyses of distraction osteogenesis in a mouse model. Journal of Orthopaedic Research. 16, 636-642 (1998).
  13. Choi, P., Ogilvie, C., Thompson, Z., Miclau, T., Helms, J. A. Cellular and molecular characterization of a murine non-union model. J. Orthop. Res. 22, 1100-1107 (2004).
  14. Buckwalter, J. A., Marsh, E. T., J, L., Heckman, J. D., Bucholz, R. W. . Rockwood and Green’s fractures in adults. , 245-271 (2001).
  15. Garcia, P. The LockingMouseNail-A New Implant for Standardized Stable Osteosynthesis in Mice. J. Surg. Res. , (2009).
check_url/3552?article_type=t

Play Video

Cite This Article
Yu, Y., Bahney, C., Hu, D., Marcucio, R. S., Miclau, III, T. Creating Rigidly Stabilized Fractures for Assessing Intramembranous Ossification, Distraction Osteogenesis, or Healing of Critical Sized Defects. J. Vis. Exp. (62), e3552, doi:10.3791/3552 (2012).

View Video