Summary

测量肽转运到大Unilamellar囊泡

Published: January 27, 2012
doi:

Summary

该协议的细节肽易位到大量的unilamellar脂质囊泡的定量测量方法。这种方法还提供了关于膜易位率的信息,可用于识别肽,有效地和自发地跨越脂质双层。

Abstract

有一个多肽的积极关注,容易交叉没有细胞膜,细胞膜上受体1协助。其中许多被称为细胞穿透肽,这是经常为他们的潜力作为药物载体 1-3注意到。此外,有越来越多的利益通过非4,5膜裂解机制,特别是那些跨而不引起细胞裂解细菌细胞膜并杀死细胞与细胞内过程的干扰 6,7抗菌肽。事实上,越来越多的作者指出,细胞穿透抗菌肽1,8之间的关系。膜移位和肽的结构,其转运能力之间的关系过程中的一个坚定的认识需要有效的,重复性检测易位。一些团体提出的方法来衡量大unilamel易位LAR脂质囊泡(LUVs)9-13。 LUVs作为有用的模式细菌和真核生物的细胞膜和 14,15荧光研究中经常使用。在这里,我们描述了我们的第一考虑如抗菌肽magainin和buforin二16,17,松崎和同事开发的方法的应用程序。除了这种方法为我们的协议,我们也提出一个简单的数据分析方法,量化易位使用这种检测能力。这种易位检测的比别人的优点是,它有可能提供膜易位率的信息,不需要另外一个荧光标签,可以改变属性18,含色氨酸的肽。简单地说,易位到脂质囊泡的能力是衡量本地色氨酸残基和D之间的福斯特共振能量转移(FRET)的功能与外部相关的蛋白质时,LUV ansyl磷脂膜(图1)。细胞穿透肽裂解,因为他们遇到不羁的胰蛋白酶封装的LUVs,LUV膜和下降的FRET信号解离。在DROP FRET为转位肽观察到的信号是明显高于观察LUVs含有胰蛋白酶和胰蛋白酶抑制剂,或当不自发地穿过脂膜是一种肽暴露在含有胰蛋白酶LUVs相同的肽。这种荧光的变化提供了直接量化,随着时间的推移肽移位。

Protocol

1。制备大Unilamellar脂质囊泡(LUVs) 准备LUVs作为细胞膜模拟检测19。 混合磷脂(POPC,760.10克/摩尔),磷脂(POPG. 770.99克/摩尔),5 dimethylaminonaphthalene – 1 -磺酰磷脂(DNS教皇,994.350克/摩尔)(阿凡提极性脂)在氯仿中溶解在50 :45:5的比例。由于每个检测需要单独编制的实验和控制LUVs,两个脂质蛋糕小瓶应准备。 0.376毫克总脂质(POPC 0.188毫克,0.169毫克POPG,和0.019毫克DNS教…

Discussion

这里介绍的协议,可用于评估脂质囊泡的内部和外部的肽浓度的相对变化。这些变化与易位的能力。这个协议可以被用来确定细胞穿透肽作为药物载体的潜力。由于细胞穿透肽的兴趣的增长,这将是有趣的,看看如何采用定量的方式开发和使用方法,直接测量易位事件。

在我们的实验室中,我们发现,可以通过仔细监测几个特定方面的实验提高检测的一致性。首先,实验组?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者想感谢埃莉诺弗莱明和杰西卡陈有益的讨论。经费是由国家过敏和传染病研究所(NIH – NIAID的)奖R15AI079685和研究公司科特雷尔科学学院奖。由霍华德休斯医学研究所和斯特利基金,附加学生提供了支持。

Materials

Name of the reagent Company Catalogue number
16:0-18:1 PG Avanti Polar Lipids 840457C
1:18 Dansyl PE Avanti Polar Lipids 810330C
16:0-18:1 PC Avanti Polar Lipids 850457C
Porcine trypsin Sigma T-0303
Bowman-Birk trypsin/chymotrypsin inhibitor Sigma T-9777
Mini-extruder Avanti Polar Lipids 610000
Ammonium molybdate (para) Alfa Aesar 10811
L-ascorbic acid Sigma A1417
Hydrogen Peroxide, 30% solution Mallinckrodt chemicals 5240-05
HEPES Sigma H-3375
NaCl Sigma S-9625
EDTA Sigma E5134
NaH2PO4 Sigma S-0751

References

  1. Henriques, S. T., Melo, M. N., Castanho, M. A. Cell-penetrating peptides and antimicrobial peptides: how different are they?. Biochem. J. 399 (1), 1-1 (2006).
  2. Trehin, R., Merkle, H. P. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur. J. Pharm. Biopharm. 58 (2), 209-209 (2004).
  3. Temsamani, J., Vidal, P. The use of cell-penetrating peptides for drug delivery. Drug Discov. Today. 9 (23), 1012-1012 (2004).
  4. Hale, J. D., Hancock, R. E. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Review of Anti-Infective Therapy. 5 (6), 951-951 (2007).
  5. Nicolas, P., Rosenstein, Y. Multifunctional host defense peptides. FEBS J. 276 (22), 6464-6464 (2009).
  6. Boman, H. G., Agerberth, B., Boman, A. Mechanisms of Action on Escherichia-Coli of Cecropin-P1 and Pr-39, 2 Antibacterial Peptides from Pig Intestine. Infection and Immunity. 61 (7), 2978-2978 (1993).
  7. Park, C. B., Kim, H. S., Kim, S. C. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications. 244 (1), 253-253 (1998).
  8. Bobone, S. The thin line between cell-penetrating and antimicrobial peptides: the case of Pep-1 and Pep-1-K. J. Pept. Sci. 17 (5), 335-335 (2011).
  9. Marks, J. R., Placone, J., Hristova, K., Wimley, W. C. Spontaneous Membrane-Translocating Peptides by Orthogonal High-throughput Screening. J. Am. Chem. Soc.. , (2011).
  10. Rosenbluh, J. Translocation of histone proteins across lipid bilayers and Mycoplasma membranes. J. Mol. Biol. 345 (2), 387-387 (2005).
  11. Bárány-Wallje, E. A critical reassessment of penetratin translocation across lipid membranes. Biophys. J. 89 (4), 2513-2513 (2005).
  12. Henriques, S. T., Costa, J., Castanho, M. A. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry. 44 (30), 10189-10189 (2005).
  13. Orioni, B. Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Biochim. Biophys. Acta. 1788 (7), 1523-1523 (2009).
  14. Ladokhin, A. S., Jayasinghe, S., White, S. H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother?. Anal. Biochem. 285 (2), 235-235 (2000).
  15. Epand, R. M., Epand, R. F. Liposomes as models for antimicrobial peptides. Methods Enzymol. 372, 124-124 (2003).
  16. Kobayashi, S. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: Proline as a translocation promoting factor. Biochemistry. 39 (29), 8648-8648 (2000).
  17. Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry. 34 (19), 6521-6521 (1995).
  18. Henriques, S. T., Costa, J., Castanho, M. A. Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using Pep-1. FEBS Lett. 579 (20), 4498-4498 (2005).
  19. Torchilin, V. P., Weissig, V. . Liposomes. , (2003).
  20. Almeida, P. F., Pokorny, A. Avanti Polar Lipids, Determination of Total Phosphorus. Biochemistry. 1686 (34), 8083-8083 (2009).
  21. Kobayashi, S. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Biochemistry. 43 (49), 15610-15610 (2004).
check_url/3571?article_type=t

Play Video

Cite This Article
Spinella, S. A., Nelson, R. B., Elmore, D. E. Measuring Peptide Translocation into Large Unilamellar Vesicles. J. Vis. Exp. (59), e3571, doi:10.3791/3571 (2012).

View Video