Summary

通过电荷分离纳米晶及其固体收获太阳能

Published: August 23, 2012
doi:

Summary

一般的电荷分离半导体纳米复合材料的太阳能生产部署的发展战略。我们表明,装配在一个单一纳米粒子的几何形状引起的光催化功能,给体 – 受体纳米晶域,大量异质结的给体 – 受体纳米晶薄膜可用于光伏发电的能量转换。

Abstract

交接不同的半导体材料,在一个单一的纳米复合材料提供新颖光电材料的发展,提供了优越的控制跨材料界面的空间分布的电荷载体的合成装置。这项研究表明,给体-受体纳米晶(NC)域在一个单一纳米粒子的组合可以导致实现高效的光催化1-5材料,而供体和受体,如纳米晶体薄膜的层状组装产生了光伏材料。

最初专注于复合无机纳米晶的合成,包括线性堆叠的ZnSe,CdS和PT领域,共同推动光诱导电荷分离。这些结构用于水在太阳辐射下的光催化性能的影响,从而导致在水溶液中的H 2气体的生产中。为了提高光致分离收费,纳米棒的形态使用源自电场的特性的线性梯度5。域间的能量,然后优化,以驱动光生电子朝向的Pt的催化位点,而排出孔的表面的ZnSe域牺牲再生(通过甲醇)。在这里,我们表明,唯一有效的方式来产生氢气是使用给电子配体,以钝化表面状态,通过调整在的半导体配体界面的能量水平对齐。稳定,高效的还原水所允许的事实,即它们的价带中的半导体域补空缺,防止精力充沛空穴从降解它由于这些配体。具体而言,我们表明,该孔的能量被转移到的配体部分,离开半导体域功能。这使我们能够返回整个纳米晶体的配体系统到正常状态,当配体的退化,通过简单地添加新鲜的配体系统4。

为了推动光伏电荷分离,我们使用了两三层实木复合硫化铅和TiO 2薄膜。在此配置中,光生电子被注入到TiO 2的,并随后由FTO电极,而空穴被引导到Au电极经由含PbS层6。发展后者,我们引入了纳米晶半导体矩阵封装的阵列 (SMENA)战略,允许粘接硫化铅纳米CdS半导体到周围的矩阵。作为一个结果,制成固体表现出优异的热稳定性,归因于异质外延结构的纳米晶体矩阵接口,和显示在原型太阳能电池7迫使捕光性能。

Protocol

1。合成硒化锌的核心纳米晶8 “地点7.0克ODA和一个磁性搅拌棒放入三颈烧瓶中。 在一个单独的烧瓶中,结合0.063克Se和2.4毫升TOP,加入磁力搅拌棒。 TOP和硒的混合物应在真空下脱气30分钟。 德加的官方发展援助的90分钟,在120°C下氩气流量,然后把宽的玻璃排气。 热至300°C的官方发展援助,并注入硒的混合物。让温度返回到300℃。 1.0毫升的Et 2…

Discussion

这项研究表明,如何可以被用来实现一个空间分离的光生电荷的无机纳米晶体的复合体系结构。特别是,这些复合材料的允许跨越两个域,然后可用来执行无论是光催化或光电功能的分配的收费的微调。例如,高效光催化剂,可如果供体和受体纳米晶域建立​​一个单一纳米粒子。在图5中示出这样的系统的能量。同时,堆叠供体和受体的纳米薄膜可以导致光伏材料。

<p class="jove_co…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们想承认博士菲利克斯卡斯特拉诺(BGSU)的意见和有价值的讨论和NR尼尔。我们非常感谢OBOR“重大网络”计划和博林格林州立大学的财政支持。部分支持这项工作是由美国国家科学基金会下奖CHE – 1112227。

Materials

Name of the reagent Company Catalogue number Comments (optional)
octadecylamine (ODA), 90% Fisher AC12932-0050
selenium (Se), 200 mesh Acros AC19807-2500
tri-n-octylphosphine (TOP), 97% Strem 15-6655 Air Sensitive
diethyl zinc (Et2Zn), 10% by wt. Aldrich 22080 Air Sensitive, Light Sensitive
methanol, 99.8%, anhydrous Aldrich 179337
toluene, 99.8%, anhydrous Aldrich 244511
tri-n-octylphosphine oxide (TOPO), 99% Aldrich 223301
n-octadecylphosphonic acid (ODPA), 98% PCI Synthesis 104224
hexylphosphonic acid (HPA), 98% PCI Synthesis 4721-24-8
cadmium oxide (CdO), 99.99% Aldrich 202894
sulfur (S), 99.999% Acros AC19993-0500 Strong odor
11-mercaptoundecanoic acid (MUA), 95% Aldrich 450561
potassium hydroxide (KOH) Acros AC13406-0010
chloroform VWR EM-CX1059-1
lead oxide (PbO), 99.999% Aldrich 32306-1KG
1-octadecene (ODE), 90% Aldrich O806-25ML
oleic acid (OA), 90% Aldrich O1008-1G
bis(trimethylsilyl) sulfide (TMS), synthetic grade Aldrich 283134-25G Air sensitive, strong odor, highly reactive
acetone EMD Chemicals AX0118-2
cadmium acetate Acros AC31713-5000
sodium sulfide nonahydrate (Na2S•9H2O), 98% Alfa Aesar CB1100945 Light sensitive
hexadecyltrimethyl ammonium bromide (CTAB), 99% Sigma H6269-100G
oleylamine, 70% Aldrich O7805-5G
diphenyl ether Alpha Aesar 101-84-8
1,2-hexadecanediol TCI 6920-24-7
Pt (II) acetylacetonate, 97% Aldrich 282782-5G
isopropanol, 99.8%, anhydrous Acros AC32696-0025
titanium tetrachloride (TiCl4), 99.9% Aldrich 697079-25G Extremely air sensitive
titanium dioxide, DSL 90T DyeSol DSL 90T
terpineol MP Biomedical 98-55-5
3-mercaptopropionic acid (MPA), 99% Alfa Aesar A10435 Strong odor
octane, anhydrous, 99% Aldrich 412236

References

  1. Kamat, P. V., Flumiani, M., Dawson, A. Metal – Metal and Metal- Semiconductor Composite Nanoclusters. Colloids Surf. A. 202, 269-279 (2002).
  2. Dawson, A., Kamat, P. V. Complexation of Gold Nanoparticles with Radiolytically Generated Thiocyanate Radicals ((SCN)2. J. Phys. Chem. B. 105, 960-966 (2001).
  3. Borensztein, Y., Delannoy, L., Djedidi, A., Barrera, R. G., Louis, C. Monitoring of the Plasmon Resonance of Gold Nanoparticles in Au/TiO2 Catalyst under Oxidative and Reducing Atmospheres. J. Phys. Chem. C. 114, 9008 (2010).
  4. Acharya, K. P., Khnayzer, R. S., O’Connor, T., Diederich, G., Kirsanova, M., Klinkova, A., Roth, D., Kinder, E., Imboden, M., Zamkov, M. The Role of Hole Localization in Sacrificial Hydrogen Production by Semiconductor-Metal Heterostructured Nanocrystals. Nano Lett. 11, 2919 (2011).
  5. Amirav, L., Alivisatos, A. P. Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures. J. Phys. Chem. Lett. 1, 1051-1054 (2010).
  6. Pattantyus-Abraham, A. G., Kramer, I. J., Barkhouse, A. R., Wang, X., Konstantatos, G., Debnath, R., Levina, L., Raabe, I., Nazeeruddin, M. K., Gratzel, M. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells. ACS Nano. 4, 3374-3380 (2010).
  7. Kinder, E., Moroz, P., Diederich, G., Johnson, A., Kirsanova, M., Nemchinov, A., O’Connor, T., Roth, D., Zamkov, M. Fabrication of All-Inorganic Nanocrystal Solids through Matrix Encapsulation of Nanocrystal Arrays. J. Amer. Chem. Soc. 133, 20488-20499 (2011).
  8. Davide, C. P., Liberato, M., Lucia, C. M., Stefan, K., Cinzia, G., Marinella, S., Angela, A. Shape and Phase Control of Colloidal ZnSe Nanocrystals. Chem. Mater. 17, 1296-1306 (2005).
  9. Carbone, L., Nobile, C., de Giorgi, M., Sala, F. D., Morello, G., Pompa, P., Hytch, M., Snoeck, E., Fiore, A., Franchini, I. R., Nadasan, M., Silvestre, A. F., Chiodo, L., Kudera, S., Cingolani, R., Krahne, R., Manna, L. Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Lett. 7, 2942-2950 (2007).
  10. Habas, S. E., Yang, P., Mokari, T. Selective Growth of Metal and Binary Metal Tips on CdS Nanorods. J. Am. Chem. Soc. 130, 3294-3295 (2008).
  11. Costi, R., Saunders, A. E., Elmalem, E., Salant, A., Banin, U. Visible Light-Induced Charge Retention and Photocatalysis with Hybrid CdSe-Au Nanodumbbells. Nano Lett. 8, 637-641 (2008).
  12. Hines, M. A., Scholes, G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater. 15, 1844-1849 (2003).
  13. Pietryga, J. M., Werder, D. J., Williams, D. J., Casson, J. L., Schaller, R. D., Klimov, V. I. Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission. J. Am. Chem. Soc. 130, 4879-4885 (2008).
  14. Tang, J., Kemp, K. W., Hoogland, S., Jeong, K. S., Liu, H., Levina, L., Furukawa, M., Wang, X., Debnath, R., Cha, D. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mat. 10, 765-771 (2011).
check_url/4296?article_type=t

Play Video

Cite This Article
Diederich, G., O’Connor, T., Moroz, P., Kinder, E., Kohn, E., Perera, D., Lorek, R., Lambright, S., Imboden, M., Zamkov, M. Harvesting Solar Energy by Means of Charge-Separating Nanocrystals and Their Solids. J. Vis. Exp. (66), e4296, doi:10.3791/4296 (2012).

View Video