Summary

Immunofluorescence combinés et FISH ADN sur 3D préservé noyaux en interphase pour étudier les changements dans l'organisation nucléaire 3D

Published: February 03, 2013
doi:

Summary

Nous décrivons ici un protocole pour la détection simultanée des modifications des histones par des séquences d'ADN immunofluorescence et par FISH ADN suivies par microscopie 3D (3D et des analyses immuno-FISH ADN).

Abstract

Hybridation fluorescente in situ utilisant des sondes ADN sur le 3-dimensions noyaux conservés suivie par microscopie confocale 3D (FISH ADN 3D) représente le moyen le plus direct pour visualiser l'emplacement des loci de gènes, chromosomes sous-régions ou des territoires entiers dans des cellules individuelles. Ce type d'analyse permet de mieux comprendre l'architecture globale du noyau ainsi que le comportement des loci génomiques spécifiques et des régions dans l'espace nucléaire. Immunofluorescence, d'autre part, permet la détection des protéines nucléaires (histones modifiées, variants d'histones et des modificateurs, des machines et des facteurs de transcription nucléaires, sous-compartiments, etc.) Le problème majeur en combinant FISH ADN immunofluorescence et 3D est, d'une part, de préserver l'épitope détecté par l'anticorps, ainsi que l'architecture 3D du noyau, et d'autre part, pour permettre la pénétration de la sonde d'ADN pour détecter loci chromosomiques ou territoires 1-5. Ici, nous fournissons un protocole qui combine la visualisation des modifications de la chromatine avec loci génomiques conservées dans les noyaux 3D.

Introduction

Épigénétique mise en place de mécanismes de déclenchement et l'héritage de développement et d'un type de cellule spécifique profils transcriptionnels. À un certain niveau, cela implique la modulation de empaquetage de la chromatine qui définit des régions génomiques actifs ou silencieux. À plus grande échelle, l'organisation mondiale de la 3D et de l'architecture du génome nucléaire jouent également un rôle dans le contrôle des motifs de la transcription. Ainsi, la dissection de ces caractéristiques épigénomiques est essentielle pour une compréhension complète de la façon dont les gènes sont régulés 6-11.

Combiné FISH ADN immunofluorescence et 3D offrent une occasion unique de compléter les analyses moléculaires et biochimiques en évaluant les interactions spécifiques / associations de séquences d'ADN et / ou de protéines dans le noyau. En outre, alors que l'ensemble du génome techniques à haut débit tels que immunoprécipitation de la chromatine (ChIP-seq) ou la conformation de capture chromosome couplé avec le séquençage profond (4C-seq, 5C, Salut-C) fournir dat mondialeun sur 12 populations de cellules, les techniques d'immunofluorescence POISSON / ADN permettre des analyses au niveau de la cellule unique.

Nous décrivons ici un protocole pour la détection simultanée des modifications des histones par des séquences d'ADN immunofluorescence et par FISH ADN suivies par microscopie 3D et des analyses (3D immuno-FISH). L'avantage de ce protocole est la visualisation combinée de l'ADN et la préservation de la structure des protéines. Notre expérience dans ce domaine nous a permis d'améliorer et de simplifier les protocoles existants. Bien que nous ayons utilisé ce protocole pour détecter l'ADN des cassures double brin dans les lymphocytes subissent une recombinaison, cette méthode peut être appliquée à d'autres protéines et d'autres types de cellules.

Protocol

1. Étiquetage sonde d'ADN avec des fluorophores: Nick Translation (~ 6 h) Propre ADN de BAC (préparé par maxi-prep) ou des plasmides ou des produits de PCR, tous remis en suspension dans H 2 O, peut être utilisé pour le marquage. Notez que pour un signal FISH robuste, sondes doivent couvrir au moins 10 kb. Incuber ADN dans RNase A pendant 30 min à 37 ° C (Tous les réactifs sont énumérées dans le tableau 1). Incuber la réaction tr…

Representative Results

ADN et immuno-FISH sont utilisés dans le laboratoire Skok pour étudier les changements dans l'organisation nucléaire associés au processus de V (D) J du locus récepteurs des antigènes au cours du développement des lymphocytes B et T. Les techniques décrites ci-dessus nous permettent de mesurer des distances i) entre les deux extrémités d'un locus (contraction) ii) mesurer les distances entre les allèles ou loci (appariement), iii) analyser l'endommagement de l'ADN survenant dans les lieux, iv)…

Discussion

Les techniques décrites ci-dessus ont été utilisées dans notre laboratoire pour analyser la réglementation de V (D) J de l'immunoglobuline et TCRA / j loci dans le développement des lymphocytes 30,31. Nous sommes convaincus que cette technique peut être adaptée pour la détection de diverses protéines nucléaires, des compartiments nucléaires et les lieux, dans différents types cellulaires. Modifications du protocole peut être nécessaire, et dans ce cas les étapes majeures …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Nous tenons à remercier les membres du laboratoire Skok, surtout Susannah Hewitt, de discussions et de commentaires. Ce travail est soutenu par l'Institut national de la santé subventions R01GM086852, RC1CA145746 (JAS). JAS est une leucémie et érudit Lymphoma Society. JC est un Fellow Irvington Institut de la recherche sur le cancer Institut. MM est soutenu par une éducation National Science Foundation Grant universitaire intégré et des stages de recherche (NSF IGERT 0333389).

Materials

Name of Reagent/Material Company Catalogue Number Comments
H2O Fisher # BP2470
RNase A Sigma # R4642
dNTP Sigma # DNTP100
Alexa dUTP Invitrogen # C11397 to C-11401
Cy3 or Cy5 dUTP Fisher # 45-001-xxx
DNase I Roche # 04536282001
DNA Pol I Biolabs # M0209
0.025 μm filters Millipore # VSWP02500
Cot-1 DNA 1 mg/ml Invitrogen # 18440
Hybloc DNA 1 mg/ml Applied Genetics # MHB
Salmon sperm Sigma # D1626 powder to be resuspended at 10 mg/ml in H2O
NaAc (Sodium Acetate, pH 5.2, buffer solution) Sigma # S7899
Ficoll 400 (Mol Biol grade) Fisher # 525
Polyvinylpyrrolidone (Mol Biol grade) Fisher # BP431
Dextran sulfate powder Sigma # D8906
SSPE (Saline-Sodium Phosphate-EDTA) 20x solution Fisher # BP1328
Formamide Fisher # BP227
Coverslips Fisher # 12-548-B
Slides Fisher # 12-550
6-well plates Fisher # 0720080
PBS, 10x Fisher # MT-46-013-CM
Poly-L-lysine solution Sigma # P8920
Paraformaldehyde, prills, 95% Sigma # 441244
Triton-X-100, Mol Biol grade Sigma # T8787
BSA (Bovine Serum Albumin) Fraction V Fisher # BP 1600
Normal goat serum Vector Labs # S-1000
Tween-20, Mol Biol grade Sigma # P9416
SSC (Saline Sodium Citrate) 20x solution Fisher # BP1325
ProLong Gold antifade reagent Invitrogen # P36930
DAPI (4′,6-diamidino-2-phenylindole) Sigma # D9542
Best test one coat rubber cement Art or office supply stores
Table 1. Specific reagents and small equipment.

References

  1. Chaumeil, J., Okamoto, I., Heard, E. X-chromosome inactivation in mouse embryonic stem cells: analysis of histone modifications and transcriptional activity using immunofluorescence and FISH. Methods in enzymology. , 376-405 (2004).
  2. Cremer, M., et al. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol. 463, 205-239 (2008).
  3. Chaumeil, J., Augui, S., Chow, J. C., Heard, E. Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol. Biol. 463, 297-308 (2008).
  4. Solovei, I., Cremer, M. 3D-FISH on cultured cells combined with immunostaining. Methods Mol. Biol. 659, 117-126 (2010).
  5. Markaki, Y. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. BioEssays : news and reviews in molecular, cellular and developmental biology. 34, 412-426 (2012).
  6. Heard, E., Bickmore, W. The ins and outs of gene regulation and chromosome territory organisation. Current opinion in cell biology. 19, 311-316 (2007).
  7. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell. 128, 787-800 (1016).
  8. Fraser, P., Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature. 447, 413-417 (2007).
  9. Cremer, T., et al. Chromosome territories–a functional nuclear landscape. Current opinion in cell biology. 18, 307-316 (2006).
  10. Mao, Y. S., Zhang, B., Spector, D. L. Biogenesis and function of nuclear bodies. Trends in genetics : TIG. 27, 295-306 (2011).
  11. Dostie, J., Bickmore, W. A. Chromosome organization in the nucleus – charting new territory across the Hi-Cs. Current opinion in genetics & development. 22, 125-131 (2012).
  12. van Steensel, B., Dekker, J. Genomics tools for unraveling chromosome architecture. Nature. 28, 1089-1095 (2010).
  13. Massey, F. J. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association. 253, 1951 (1951).
  14. Collins, A., et al. RUNX transcription factor-mediated association of Cd4 and Cd8 enables coordinate gene regulation. Immunity. 34, 303-314 (2011).
  15. Fisher, R. A. On the interpretation of χ2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society. 85, 87-94 (1922).
  16. Benjamini, Y. H., Yosef, Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological). 57, 125-133 (1995).
  17. Fitzsimmons, S. P., Bernstein, R. M., Max, E. E., Skok, J. A., Shapiro, M. A. Dynamic changes in accessibility, nuclear positioning, recombination, and transcription at the Igkappa locus. J. Immunol. 179, 5264-5273 (2007).
  18. Fuxa, M., et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411-422 (2004).
  19. Goldmit, M. Epigenetic ontogeny of the Igk locus during B cell development. Nature. 6, 198-203 (2005).
  20. Hewitt, S. L. Association between the Igk and Igh immunoglobulin loci mediated by the 3′ Igk enhancer induces ‘decontraction’ of the Igh locus in pre-B cells. Nature. 9, 396-404 (2008).
  21. Johnson, K. IL-7 Functionally Segregates the Pro-B Cell Stage by Regulating Transcription of Recombination Mediators across Cell Cycle. Journal of Immunology. , (2012).
  22. Karnowski, A., et al. Silencing and nuclear repositioning of the lambda5 gene locus at the pre-b cell stage requires Aiolos and OBF-1. PLoS ONE. 3, e3568 (2008).
  23. Kosak, S. T. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 296, 158-162 (2002).
  24. Liu, H., et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 21, 1179-1189 (2007).
  25. Parker, M. J. The pre-B-cell receptor induces silencing of VpreB and lambda5 transcription. Embo J. 24, 3895-3905 (2005).
  26. Roldan, E., et al. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nature immunology. 6, 31-41 (2005).
  27. Skok, J. A. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature. 2, 848-854 (2001).
  28. Skok, J. A. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nature immunology. 8, 378-387 (2007).
  29. Xiang, Y., Zhou, X., Hewitt, S. L., Skok, J. A., Garrard, W. T. A multifunctional element in the mouse Igkappa locus that specifies repertoire and Ig loci subnuclear location. Journal of Immunology. 186, 5356-5366 (2011).
  30. Hewitt, S. L. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature immunology. 10, 655-664 (2009).
  31. Deriano, L., et al. The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature. 471, 119-123 (2011).
  32. Brown, K. E., Baxter, J., Graf, D., Merkenschlager, M., Fisher, A. G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Molecular cell. 3, 207-217 (1999).
  33. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M., Nussenzweig, A. H2AX: the histone guardian of the genome. DNA repair. 3, 959-967 (2004).
  34. Croft, J. A., et al. Differences in the localization and morphology of chromosomes in the human nucleus. The Journal of cell biology. 145, 1119-1131 (1999).
  35. Chaumeil, J., Le Baccon, P., Wutz, A., Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223-2237 (2006).
  36. Walter, J., et al. Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenetic and genome research. 114, 367-378 (2006).
  37. Toomre, D., Bewersdorf, J. A new wave of cellular imaging. Annual review of cell and developmental biology. 26, 285-314 (2010).
  38. Schermelleh, L., Heintzmann, R., Leonhardt, H. A guide to super-resolution fluorescence microscopy. The Journal of cell biology. 190, 165-175 (2010).
  39. Dobbie, I. M. OMX: a new platform for multimodal, multichannel wide-field imaging. Cold Spring Harbor protocols. , 899-909 (2011).
  40. Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A., Bickmore, W. A. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 19, 901-909 (2011).
check_url/50087?article_type=t

Play Video

Cite This Article
Chaumeil, J., Micsinai, M., Skok, J. A. Combined Immunofluorescence and DNA FISH on 3D-preserved Interphase Nuclei to Study Changes in 3D Nuclear Organization. J. Vis. Exp. (72), e50087, doi:10.3791/50087 (2013).

View Video