Summary

病人的具体建模之心:的心室纤维方向估计

Published: January 08, 2013
doi:

Summary

估计心室纤维方向,从病人的心脏几何形状的个性化造型的体内图像描述的一种方法。验证的方法进行使用正常和失败的犬心脏表明,有估计和收购的纤维方向在临床观察的水平没有显着差异。

Abstract

(DYS)的心脏功能,以个性化的心脏治疗的病人,具体的模拟受阻的情况下, 活体成像技术临床上取得心肌纤维方向。该项目的目标是开发一种方法,,估计心肌纤维方向,从病人的心脏形状的体内图像。准确地表述室的几何形状和纤维方向,分别从重建高分辨率体外结构磁共振(MR)和弥散张量磁共振图像(DT)的一个正常的人的心,简称为寰椎。病人心脏的心室几何提取, 通过半自动的分割, 在体内计算机断层扫描(CT)图像。使用图像转换算法,该地图集心室几何变形相匹配的病人。最后,形变场,以图谱纤维orientat的应用离子,得到的估计病人的纤维取向。评估使用正常和三个六未能犬心纤维估计的准确性。获取和估计的纤维取向的倾斜角之间的平均绝对差为15.4°。模拟计算表明,在窦性心律和室性心动过速的心室激动的地图和伪心电图估计和收购的纤维取向之间没有显着的差异,在临床观察的水平。从该项目获得了新的见解的发展铺平了道路病人具体型号的心脏,可以帮助医生在个性化的诊断和决定有关电的干预。

Introduction

的计算方法是成为中心的功能的心脏健康和疾病的认识的进步。国家的最先进的全心脏电生理和机电模型,目前正在研究一个广泛的现象,比如,正常心室传播,心律不齐,除颤, ​​机电耦合,和心脏再同步1。然而,在临床环境中可直接适用的计算方法,它是必要的,该模型是病人的具体的模型, 必须根据特定的体系结构和病人的病变心脏的电机电性能。这些模型的模拟将帮助医生到达电干预措施,以及预防,高度个性化的决定,从而显着改善心脏健康护理2-4。

内容“>创建逼真的心脏模型需要获得病人的心脏的几何结构和纤维结构。纤维方向确定在心脏的电传导的方向和应变分布,并因此获取这些是必不可少的心脏模型5,6。在医疗成像的最新进展,它是可行的,得到一个病人的心,includingstructural的的重塑,如心肌梗死,高分辨率磁共振成像(MRI)和计算机断层扫描(CT)技术在体内的几何形状,但有没有实用的方法,用于获取一个病人在体心脏纤维结构体。扩散张量(DT)MRI 7,8,唯一的技术来获得纤维取向的原封未动的心,是不能广泛提供的简要说明在体内,由于一定的局限性9。以前的努力翻译DTMRI到临床可以发现elsewh的ERE 2。虽然方法,如纤维方向的以规则为基础的分配提供的替代品DTMRI,这些方法有一定的的严重限制2,10。因此,收购心肌纤维结构在体内的困难,目前阻碍心脏电生理和机电模拟在临床上的应用。本研究的目的是直接满足这一需求。

我们假设,一个心脏的心室纤维方向可以准确地预测的心脏和几何形状的地图集,该地图集是心脏的几何形状和纤维方向。因此,我们使用的最先进的技术开发一种方法,估计在体内的心肌纤维方向,在正常和失败的犬心室2测试的假设。我们的光纤估计方法的核心思想是利用similarities的纤维方向,相对于几何形状,以近似的纤维结构(目标)心脏的几何信息,请访问不同的心灵。在我们的估计方法的心脏是注册寰椎与目标几何几何大变形微分同胚公制映射(LDDMM)11,和变形寰纤维方向使用保存的主要组成部分(PPD),12。diffeomorphicproperty的地图集确实不是“foldover”本身在变形过程中,从而保留integrityof的解剖结构, 图1示出我们的方法的处理管道的LDDMM担保。的协议文本部分§1描述的各个组成部分的管道,通过展示如何估计,可进行一个例子病人。请参阅相应的部分在图1中的块内的数字根据第§1款的协议文本。

我们评估的表现所提出的方法通过量化的估计误差,测量的心脏电生理这个错误onsimulations的效果,通过计算模拟当地的电激活地图以及伪心电图(伪心电图)。由于不可用人类的心灵,绩效评估进行犬心脏从以往的研究13-15。的估计计算错误由倾斜角16,followingthe的传统的组织学,角的测量是performedon组织被切断的部分,平行的epicardialsurface,手段。由于anglebetween纤维方向与心外膜的切平面generallysmall 17,18,是微不足道的在描述一个fiberdirection完全使用它的倾斜角的信息损失。对于COMPUT报告以前是19,20,和心肌组织的模型的基础上建立的数学方法和实验数据21日至25日,代表憩模拟,基于图像的模型建立。窦性心律模拟复制的激活源于Purkinje神经网络26,室性心动过速,S1-S2起搏协议27。伪心电图,计算28和比较,采用平均绝对偏差(MAD)指标29。

Protocol

1。纤维方向估计正常成人心脏在舒张时获取的结构MRI和DTMRI的图像,分辨率为1毫米3。使用ImageJ,提取心室肌细胞从地图集的结构图像的拟合,为每个短轴切片,封闭样条曲线通过一组标志点,沿心外膜和心内膜切片中的边界( 图2A和图2B)。执行手动放置标志点为每10 个图像中的切片。获取剩余的片的标志点,通过线性插值手动确定的点,使用MA…

Representative Results

图11,AC简化的可视化显示的估计以及DTMRI衍生的纤维方向在正常和心脏衰竭。定性检测显示,估计纤维方向一致,与DTMRI衍生的。 D组说明,覆盖的几何形状的心脏,在正常心脏的倾斜角度的误差分布,平均在所有五个估算。面板E在没有心的倾斜角度,心脏1的几何结构上重叠显示的错误的平均分布。请注意,倾斜角在-90°和+90°之间的值,因此,在0°和180°之间的估计误差范围。组件F…

Discussion

此研究表明定量正常和失败的心室的心肌纤维取向,在没有DTMRI,可估计出的体内图像其在心脏电生理学的模拟中使用的几何形状。拟议的方法表明在体内的CT数据,但它也同样适用于在体内 MR图像心室几何,寻址能力直接获取 ​​病人的纤维取向的缺乏。因此,这是心电生理临床应用的个性化车型的发展迈出的重要一步。该方法也可用于具有高分辨率的前体内的<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢博士。雷蒙温斯洛,埃利奥特·麦克维和帕特里克头盔在约翰·霍普金斯大学提供的体外资料 online.This的研究得到美国国立卫生研究院资助R01-HL082729,国家科学基金会的资助CBET-0933029。

Materials

LDDMM Johns Hopkins University http://cis.jhu.edu/software/lddmm-volume/index.php
MATLAB Mathworks, Inc. R2011b http://www.mathworks.com/products/matlab/
ImageJ National Institutes of Health http://rsbweb.nih.gov/ij/
Tarantula CAE Software Solutions http://www.meshing.at/Spiderhome/Tarantula.html
CARP CardioSolv http://cardiosolv.com/
Canine images Johns Hopkins University http://www.ccbm.jhu.edu/research/DTMRIDS.php

References

  1. Trayanova, N. Whole Heart Modeling: Applications to Cardiac Electrophysiology and Electromechanics. Circulation Research. 108, 113-128 .
  2. Vadakkumpadan, F., Arevalo, H., Ceritoglu, C., Miller, M., Trayanova, N. Image-Based Estimation of Ventricular Fiber Orientations for Personalized Modeling of Cardiac Electrophysiology. IEEE Transactions on Medical Imaging. 31 (5), 1051-1060 .
  3. Vadakkumpadan, F., Gurev, V., Constantino, J., Arevalo, H., Trayanova, N., Kerckhoffs, R. Modeling of Whole-Heart Electrophysiology and Mechanics: Towards Patient-Specific Simulations. Patient-Specific Modeling of the Cardiovascular System: Technology-Driven Personalized Medicine. , 145-165 (2010).
  4. Buxton, A. E., Lee, K. L., DiCarlo, L., Gold, M. R., Greer, G. S., Prystowsky, E. N., O’Toole, M. F., Tang, A., Fisher, J. D., Coromilas, J., Talajic, M., Hafley, G. Electrophysiologic testing to identify patients with coronary artery disease who are at risk for sudden death. Multicenter Unsustained Tachycardia Trial Investigators. The New England Journal of Medicine. 342 (26), 1937-1945 (2000).
  5. Wei, D., Okazaki, O., Harumi, K., Harasawa, E., Hosaka, H. Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models. IEEE Transactions on Biomedical Engineering. 42 (4), 343-357 (1995).
  6. Leon, L. J., Horacek, B. M. Computer model of excitation and recovery in the anisotropic myocardium. II. Excitation in the simplified left ventricle. Journal of Electrocardiology. 24 (1), 17-31 (1991).
  7. Rohmer, D., Sitek, A., Gullberg, G. T. Reconstruction and Visualization of Fiber and Laminar Structure in the Normal Human Heart from Ex Vivo Diffusion Tensor Magnetic Resonance Imaging (DTMRI) Data. Investigative Radiology. 42 (11), 777-789 (2007).
  8. Daubert, J. P., Zareba, W., Hall, W. J., Schuger, C., Corsello, A., Leon, A. R., Andrews, M. L., McNitt, S., Huang, D. T., Moss, A. J., Investigators, M. I. S. Predictive value of ventricular arrhythmia inducibility for subsequent ventricular tachycardia or ventricular fibrillation in Multicenter Automatic Defibrillator Implantation Trial (MADIT) II patients. Journal of Americal College of Cardiology. 47 (1), 98-107 (2006).
  9. Sosnovik, D. E., Wang, R., Dai, G., Reese, T. G., Wedeen, V. J. Diffusion MR tractography of the heart. Journal of Cardiovascular Magnetic Resonance. 11 (1), 47-61 (2009).
  10. Sundar, H., Shen, D., Biros, G., Litt, H., Davatzikos, C. Estimating myocardial fiber orientations by template warping. Proc. IEEE International Symposium on Biomedical Imaging. , 73-76 (2006).
  11. Beg, M. F., Helm, P. A., McVeigh, E., Miller, M. I., Winslow, R. L. Computational Cardiac Anatomy Using MRI. Magnetic Resonance in Medicine. 52 (5), 1167-1174 (2004).
  12. Alexander, D. C., Pierpaoli, C., Basser, P. J., Gee, J. C. Spatial Transformations of Diffusion Tensor Magnetic Resonance Images. IEEE Transactions on Medical Imaging. 20, 1131-1139 (2001).
  13. Helm, P. A., Younes, L., Beg, M. F., Ennis, D. B., Leclercq, C., Faris, O. P., McVeigh, E., Kass, D., Miller, M. I., Winslow, R. L. Evidence of Structural Remodeling in the Dyssynchronous Failing Heart. Circulation Research. 98, 125-132 (2006).
  14. Helm, P., Beg, M. F., Miller, M., Winslow, R. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Annals of the New York Academy of Sciences. 1047, 296-307 (2005).
  15. Helm, P. A., Tseng, H. -. J., Younes, L., McVeigh, E. R., Winslow, R. L. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magnetic Resonance in Imaging. 54, 850-859 (2005).
  16. Scollan, D. F., Holmes, A., Winslow, R., Forder, J. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. American Journal of Physiology – Heart and Circulatory Physiology. 275 (6), H2308-H2318 (1998).
  17. Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N. Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population. IEEE Transactions on Medical Imaging. 31 (7), 1436-1447 (2012).
  18. Streeter, D. D. . Gross morphology and fiber geometry of the heart. , (1979).
  19. Vadakkumpadan, F., Rantner, L. J., Tice, B., Boyle, P., Prassl, A. J., Vigmond, E., Plank, G., Trayanova, N. Image-Based Models of Cardiac Structure with Applications in Arrhythmia and Defibrillation Studies. Journal of Electrocardiology. 42, 151.e1-151.e10 (2009).
  20. Plank, G., Zhou, L., Greenstein, J. L., Plank, G., Zhou, L., Greenstein, J. L., Cortassa, S., Winslow, R. L., O’Rourke, B., Trayanova, N. A. From mitochondrial ion channels to arrhythmias in the heart: computational techniques to bridge the spatio-temporal scales. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences. 366 (1879), 3381-3409 (2008).
  21. Roberts, D. E., Scher, A. M. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circulation Research. 50, 342-351 (1982).
  22. Greenstein, J., Wu, R., Po, S., Tomaselli, G. F., Winslow, R. L. Role of the Calcium-Independent Transient Outward Current I(to1) in Shaping Action Potential Morphology and Duration. Circulation Research. 87, 1026-1033 (2000).
  23. Winslow, R., Rice, J., Jafri, S., Marbán, E., O’Rourke, B. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circulation Research. 84 (5), 571-586 (1999).
  24. Akar, F., Nass, R., Hahn, S., Cingolani, E., Shah, M., Hesketh, G., DiSilvestre, D., Tunin, R., Kass, D., Tomaselli, G. Dynamic Changes in Conduction Velocity and Gap Junction Properties During Development of Pacing-Induced Heart Failure. American Journal of Physiology – Heart and Circulatory Physiology. 293 (2), H1223-H1230 (2007).
  25. Gurev, V., Constantino, J., Rice, J. J., Trayanova, N. Distribution of Electromechanical Delay in the Ventricles:Insights from a 3D Electromechanical Model of the Heart. Biophysical Journal. 99 (3), 745-754 .
  26. Ten Tusscher, K. H. W. J., Hren, R., Panfilov, A. V. Organization of Ventricular Fibrillation in the Human Heart. Circulation Research. 100 (12), e87-e101 (2007).
  27. Gima, K., Rudy, Y. Ionic Current Basis of Electrocardiographic Waveforms. Circulation Research. 90, 889-896 (2002).
  28. Gerstenfeld, E., Dixit, S., Callans, D., Rajawat, Y., Rho, R., Marchlinski, F. Quantitative comparison of spontaneous and paced 12-lead electrocardiogram during right ventricular outflow tract ventricular tachycardia. Journal of Americal College of Cardiology. 41 (11), 2046-2053 (2003).
  29. Potse, M., Dube, B., Richer, J., Vinet, A., Gulrajani, R. M. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Transactions on Biomedical Engineering. 53 (12), 2425-2435 (2006).
  30. Peyrat, J. -. M., Sermesant, M., Pennec, X., Delingette, H., Chenyang, X., McVeigh, E. R., Ayache, N. A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts. IEEE Transactions on Medical Imaging. 26, 1500-1514 (2007).
  31. Chen, J., Song, S. -. K., Liu, W., McLean, M., Allen, S. J., Tan, J., Wickline, S. A., Yu, X. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. American Journal of Physiology – Heart and Circulatory Physiology. 285 (3), H946-H954 (2003).
  32. Stecker, E. C., Chugh, S. S. Prediction of sudden cardiac death: next steps in pursuit of effective methodology. Journal of Interventional Cardiac Electrophysiolog. 31 (2), 101-107 (2011).
check_url/50125?article_type=t

Play Video

Cite This Article
Vadakkumpadan, F., Arevalo, H., Trayanova, N. A. Patient-specific Modeling of the Heart: Estimation of Ventricular Fiber Orientations. J. Vis. Exp. (71), e50125, doi:10.3791/50125 (2013).

View Video